Semi-Supervised Representation Learning for Segmentation on Medical Volumes and Sequences

被引:1
|
作者
Chen, Zejian [1 ,2 ]
Zhuo, Wei [3 ]
Wang, Tianfu [1 ,2 ]
Cheng, Jun [1 ,2 ]
Xue, Wufeng [1 ,2 ]
Ni, Dong [1 ,2 ]
机构
[1] Shenzhen Univ, Med Sch, Sch Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Marshall Lab Biomed Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen 518060, Peoples R China
关键词
Biomedical imaging; Semantics; Image segmentation; Decoding; Task analysis; Representation learning; Training; Medical volume segmentation; representation learning; semi-supervised; contrastive learning; IMAGE; TRANSFORMER;
D O I
10.1109/TMI.2023.3319973
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Benefiting from the massive labeled samples, deep learning-based segmentation methods have achieved great success for two dimensional natural images. However, it is still a challenging task to segment high dimensional medical volumes and sequences, due to the considerable efforts for clinical expertise to make large scale annotations. Self/semi-supervised learning methods have been shown to improve the performance by exploiting unlabeled data. However, they are still lack of mining local semantic discrimination and exploitation of volume/sequence structures. In this work, we propose a semi-supervised representation learning method with two novel modules to enhance the features in the encoder and decoder, respectively. For the encoder, based on the continuity between slices/frames and the common spatial layout of organs across subjects, we propose an asymmetric network with an attention-guided predictor to enable prediction between feature maps of different slices of unlabeled data. For the decoder, based on the semantic consistency between labeled data and unlabeled data, we introduce a novel semantic contrastive learning to regularize the feature maps in the decoder. The two parts are trained jointly with both labeled and unlabeled volumes/sequences in a semi-supervised manner. When evaluated on three benchmark datasets of medical volumes and sequences, our model outperforms existing methods with a large margin of 7.3% DSC on ACDC, 6.5% on Prostate, and 3.2% on CAMUS when only a few labeled data is available. Further, results on the M&M dataset show that the proposed method yields improvement without using any domain adaption techniques for data from unknown domain. Intensive evaluations reveal the effectiveness of representation mining, and superiority on performance of our method. The code is available at https://github.com/CcchenzJ/BootstrapRepresentation.
引用
收藏
页码:3972 / 3986
页数:15
相关论文
共 50 条
  • [31] EVIL: EVIDENTIAL INFERENCE LEARNING FOR TRUSTWORTHY SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Chen, Yingyu
    Yang, Ziyuan
    Shen, Chenyu
    Wang, Zhiwen
    Qin, Yang
    Zhang, Yi
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [32] Semi-Supervised Medical Image Segmentation Based on Deep Consistent Collaborative Learning
    Zhao, Xin
    Wang, Wenqi
    JOURNAL OF IMAGING, 2024, 10 (05)
  • [33] Uncertainty Global Contrastive Learning Framework for Semi-Supervised Medical Image Segmentation
    Liu, Hengyang
    Ren, Pengcheng
    Yuan, Yang
    Song, Chengyun
    Luo, Fen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 433 - 442
  • [34] Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation
    Ma, Yuxi
    Wang, Jiacheng
    Yang, Jing
    Wang, Liansheng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) : 1804 - 1815
  • [35] Combining contrastive learning and shape awareness for semi-supervised medical image segmentation
    Chen, Yaqi
    Chen, Faquan
    Huang, Chenxi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [36] Correlation-Aware Mutual Learning for Semi-supervised Medical Image Segmentation
    Gao, Shengbo
    Zhang, Ziji
    Ma, Jiechao
    Li, Zihao
    Zhang, Shu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 98 - 108
  • [37] Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations
    Bortsova, Gerda
    Dubost, Florian
    Hogeweg, Laurens
    Katramados, Ioannis
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 810 - 818
  • [38] MULTI-TASK CURRICULUM LEARNING FOR SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Wang, Kaiping
    Zhan, Bo
    Luo, Yanmei
    Zhou, Jiliu
    Wu, Xi
    Wang, Yan
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 925 - 928
  • [39] Semi-supervised learning and graph cuts for consensus based medical image segmentation
    Mahapatra, Dwarikanath
    PATTERN RECOGNITION, 2017, 63 : 700 - 709
  • [40] Semi-supervised Contrastive Learning for Label-Efficient Medical Image Segmentation
    Hu, Xinrong
    Zeng, Dewen
    Xu, Xiaowei
    Shi, Yiyu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 481 - 490