Semi-supervised Contrastive Learning for Label-Efficient Medical Image Segmentation

被引:64
|
作者
Hu, Xinrong [1 ]
Zeng, Dewen [1 ]
Xu, Xiaowei [2 ]
Shi, Yiyu [1 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Guangdong Prov Peoples Hosp, Guangzhou 510000, Guangdong, Peoples R China
关键词
Semi-supervised learning; Contrastive learning; Semantic segmentation; Label efficient learning;
D O I
10.1007/978-3-030-87196-3_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The success of deep learning methods in medical image segmentation tasks heavily depends on a large amount of labeled data to supervise the training. On the other hand, the annotation of biomedical images requires domain knowledge and can be laborious. Recently, contrastive learning has demonstrated great potential in learning latent representation of images even without any label. Existing works have explored its application to biomedical image segmentation where only a small portion of data is labeled, through a pre-training phase based on self-supervised contrastive learning without using any labels followed by a supervised fine-tuning phase on the labeled portion of data only. In this paper, we establish that by including the limited label information in the pre-training phase, it is possible to boost the performance of contrastive learning. We propose a supervised local contrastive loss that leverages limited pixel-wise annotation to force pixels with the same label to gather around in the embedding space. Such loss needs pixel-wise computation which can be expensive for large images, and we further propose two strategies, downsampling and block division, to address the issue. We evaluate our methods on two public biomedical image datasets of different modalities. With different amounts of labeled data, our methods consistently outperform the state-of-the-art contrast-based methods and other semi-supervised learning techniques.
引用
收藏
页码:481 / 490
页数:10
相关论文
共 50 条
  • [1] Semi-Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation
    Zhu, Lei
    Yang, Kaiyuan
    Zhang, Meihui
    Chan, Ling Ling
    Ng, Teck Khim
    Ooi, Beng Chin
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 394 - 404
  • [2] Pseudo-label Guided Contrastive Learning for Semi-supervised Medical Image Segmentation
    Basak, Hritam
    Yin, Zhaozheng
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19786 - 19797
  • [3] Label-Efficient Hybrid-Supervised Learning for Medical Image Segmentation
    Pan, Junwen
    Bi, Qi
    Yang, Yanzhan
    Zhu, Pengfei
    Bian, Cheng
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2026 - 2034
  • [4] Leveraging Geometric Structure for Label-Efficient Semi-Supervised Scene Segmentation
    Hu, Ping
    Sclaroff, Stan
    Saenko, Kate
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6320 - 6330
  • [5] Combining contrastive learning and shape awareness for semi-supervised medical image segmentation
    Chen, Yaqi
    Chen, Faquan
    Huang, Chenxi
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [6] Prototype-oriented contrastive learning for semi-supervised medical image segmentation
    Liu, Zihang
    Zhang, Haoran
    Zhao, Chunhui
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [7] LEVERAGING HARD POSITIVES FOR CONTRASTIVE LEARNING IN SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Tang Cheng
    Zeng Xinyi
    Zhou Luping
    Wu Xi
    Zhou Jiliu
    Wang Peng
    Wang Yan
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [8] Entropy-guided contrastive learning for semi-supervised medical image segmentation
    Xie, Junsong
    Wu, Qian
    Zhu, Renju
    [J]. IET IMAGE PROCESSING, 2024, 18 (02) : 312 - 326
  • [9] Semi-supervised medical image segmentation via hard positives oriented contrastive learning
    Tang, Cheng
    Zeng, Xinyi
    Zhou, Luping
    Zhou, Qizheng
    Wang, Peng
    Wu, Xi
    Ren, Hongping
    Zhou, Jiliu
    Wang, Yan
    [J]. PATTERN RECOGNITION, 2024, 146
  • [10] Semi-supervised Medical Image Segmentation with Multiscale Contrastive Learning and Cross-Supervision
    Wu, Wenxia
    Yan, Jing
    Liang, Dong
    Zhang, Zhenyu
    Li, Zhi-Cheng
    [J]. 2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,