Semi-Supervised Representation Learning for Segmentation on Medical Volumes and Sequences

被引:1
|
作者
Chen, Zejian [1 ,2 ]
Zhuo, Wei [3 ]
Wang, Tianfu [1 ,2 ]
Cheng, Jun [1 ,2 ]
Xue, Wufeng [1 ,2 ]
Ni, Dong [1 ,2 ]
机构
[1] Shenzhen Univ, Med Sch, Sch Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Marshall Lab Biomed Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Natl Engn Lab Big Data Syst Comp Technol, Shenzhen 518060, Peoples R China
关键词
Biomedical imaging; Semantics; Image segmentation; Decoding; Task analysis; Representation learning; Training; Medical volume segmentation; representation learning; semi-supervised; contrastive learning; IMAGE; TRANSFORMER;
D O I
10.1109/TMI.2023.3319973
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Benefiting from the massive labeled samples, deep learning-based segmentation methods have achieved great success for two dimensional natural images. However, it is still a challenging task to segment high dimensional medical volumes and sequences, due to the considerable efforts for clinical expertise to make large scale annotations. Self/semi-supervised learning methods have been shown to improve the performance by exploiting unlabeled data. However, they are still lack of mining local semantic discrimination and exploitation of volume/sequence structures. In this work, we propose a semi-supervised representation learning method with two novel modules to enhance the features in the encoder and decoder, respectively. For the encoder, based on the continuity between slices/frames and the common spatial layout of organs across subjects, we propose an asymmetric network with an attention-guided predictor to enable prediction between feature maps of different slices of unlabeled data. For the decoder, based on the semantic consistency between labeled data and unlabeled data, we introduce a novel semantic contrastive learning to regularize the feature maps in the decoder. The two parts are trained jointly with both labeled and unlabeled volumes/sequences in a semi-supervised manner. When evaluated on three benchmark datasets of medical volumes and sequences, our model outperforms existing methods with a large margin of 7.3% DSC on ACDC, 6.5% on Prostate, and 3.2% on CAMUS when only a few labeled data is available. Further, results on the M&M dataset show that the proposed method yields improvement without using any domain adaption techniques for data from unknown domain. Intensive evaluations reveal the effectiveness of representation mining, and superiority on performance of our method. The code is available at https://github.com/CcchenzJ/BootstrapRepresentation.
引用
收藏
页码:3972 / 3986
页数:15
相关论文
共 50 条
  • [21] Semi-supervised medical image segmentation network based on mutual learning
    Sun, Junmei
    Wang, Tianyang
    Wang, Meixi
    Li, Xiumei
    Xu, Yingying
    MEDICAL PHYSICS, 2025, 52 (03) : 1589 - 1600
  • [22] Multidimensional perturbed consistency learning for semi-supervised medical image segmentation
    Yuan, Enze
    Zhao, Bin
    Qin, Xiao
    Ding, Shuxue
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [23] Semi-supervised Domain Adaptation with Representation Learning for Semantic Segmentation Across Time
    Benbihi, Assia
    Geist, Matthieu
    Pradalier, Cedric
    NEURAL INFORMATION PROCESSING, ICONIP 2019, PT V, 2019, 1143 : 459 - 466
  • [24] Semantic Segmentation with Active Semi-Supervised Learning
    Rangnekar, Aneesh
    Kanan, Christopher
    Hoffman, Matthew
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5955 - 5966
  • [25] Teeth Segmentation via Semi-Supervised Learning
    Gao, Yonghui
    Li, Xiaoxiao
    PROCEEDINGS OF THE 2013 6TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2013), VOLS 1 AND 2, 2013, : 558 - 563
  • [26] On semi-supervised multiple representation behavior learning
    Lu, Ruqian
    Hou, Shengluan
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 46
  • [27] Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation
    Jiao, Rushi
    Zhang, Yichi
    Ding, Le
    Xue, Bingsen
    Zhang, Jicong
    Cai, Rong
    Jin, Cheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [28] ISDNet: Importance Guided Semi-supervised Adversarial Learning for Medical Image Segmentation
    Ning, Qingtian
    Zhao, Xu
    Qian, Dahong
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 459 - 470
  • [29] Uncertainty-aware consistency learning for semi-supervised medical image segmentation
    Dong, Min
    Yang, Ating
    Wang, Zhenhang
    Li, Dezhen
    Yang, Jing
    Zhao, Rongchang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [30] Effective Semi-Supervised Medical Image Segmentation With Probabilistic Representations and Prototype Learning
    Yuan, Yuchen
    Wang, Xi
    Yang, Xikai
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (03) : 1181 - 1193