ISDNet: Importance Guided Semi-supervised Adversarial Learning for Medical Image Segmentation

被引:0
|
作者
Ning, Qingtian [1 ]
Zhao, Xu [1 ]
Qian, Dahong [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Medical image segmentation; Semi-supervised; GAN;
D O I
10.1007/978-3-030-34110-7_38
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recent deep neural networks have achieved great success in medical image segmentation. However, massive labeled training data should be provided during network training, which is time consuming with intensive labor work and even requires expertise knowledge. To address such challenge, inspired by typical GANs, we propose a novel end-to-end semi-supervised adversarial learning framework for medical image segmentation, called "Importance guided Semi-supervised Deep Networks" (ISDNet). While most existing works based on GANs use a classifier discriminator to achieve adversarial learning, we combine a fully convolutional discriminator and a classifier discriminator to fulfill better adversarial learning and self-taught learning. Specifically, we propose an importance weight network combined with our FCN-based confidence network, which can assist segmentation network to learn better local and global information. Extensive experiments are conducted on the LASC 2013 and the LiTS 2017 datasets to demonstrate the effectiveness of our approach.
引用
收藏
页码:459 / 470
页数:12
相关论文
共 50 条
  • [1] Consistency and adversarial semi-supervised learning for medical image segmentation
    Tang, Yongqiang
    Wang, Shilei
    Qu, Yuxun
    Cui, Zhihua
    Zhang, Wensheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 161
  • [2] Voxel-wise adversarial semi-supervised learning for medical image segmentation
    Lee, Chae Eun
    Park, Hyelim
    Shin, Yeong-Gil
    Chung, Minyoung
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [3] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [4] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [5] Confidence-guided mask learning for semi-supervised medical image segmentation
    Li, Wenxue
    Lu, Wei
    Chu, Jinghui
    Tian, Qi
    Fan, Fugui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [6] Entropy-guided contrastive learning for semi-supervised medical image segmentation
    Xie, Junsong
    Wu, Qian
    Zhu, Renju
    IET IMAGE PROCESSING, 2024, 18 (02) : 312 - 326
  • [7] Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation
    Zhang, Yichi
    Jiao, Rushi
    Liao, Qingcheng
    Li, Dongyang
    Zhang, Jicong
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 138
  • [8] Pseudo-label Guided Contrastive Learning for Semi-supervised Medical Image Segmentation
    Basak, Hritam
    Yin, Zhaozheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 19786 - 19797
  • [9] Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network
    Lei, Tao
    Zhang, Dong
    Du, Xiaogang
    Wang, Xuan
    Wan, Yong
    Nandi, Asoke K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (05) : 1265 - 1277
  • [10] Deep semi-supervised learning for medical image segmentation: A review
    Han, Kai
    Sheng, Victor S.
    Song, Yuqing
    Liu, Yi
    Qiu, Chengjian
    Ma, Siqi
    Liu, Zhe
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245