Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation

被引:4
|
作者
Ma, Yuxi [1 ]
Wang, Jiacheng [2 ]
Yang, Jing [1 ]
Wang, Liansheng [1 ,2 ]
机构
[1] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Sch Informat, Dept Comp Sci, Xiamen 361005, Peoples R China
关键词
Federated learning; knowledge distilling; medical image segmentation; semi-supervised learning;
D O I
10.1109/TMI.2023.3348982
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions. However, this task is often accompanied by challenges like sensitive data, privacy concerns, and expensive annotations. Current research focuses on personalized collaborative training of medical segmentation systems, ignoring that obtaining segmentation annotations is time-consuming and laborious. Achieving a perfect balance between annotation cost and segmentation performance while ensuring local model personalization has become a valuable direction. Therefore, this study introduces a novel Model-Heterogeneous Semi-Supervised Federated (HSSF) Learning framework. It proposes Regularity Condensation and Regularity Fusion to transfer autonomously selective knowledge to ensure the personalization between sites. In addition, to efficiently utilize unlabeled data and reduce the annotation burden, it proposes a Self-Assessment (SA) module and a Reliable Pseudo-Label Generation (RPG) module. The SA module generates self-assessment confidence in real-time based on model performance, and the RPG module generates reliable pseudo-label based on SA confidence. We evaluate our model separately on the Skin Lesion and Polyp Lesion datasets. The results show that our model performs better than other methods characterized by heterogeneity. Moreover, it exhibits highly commendable performance even in homogeneous designs, most notably in region-based metrics. The full range of resources can be readily accessed through the designated repository located at HSSF(github.com) on the platform of GitHub.
引用
收藏
页码:1804 / 1815
页数:12
相关论文
共 50 条
  • [1] Federated Semi-supervised Medical Image Segmentation Based on Asynchronous Transmission
    Liu, Fangbo
    Yang, Feng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT III, 2023, 14088 : 55 - 66
  • [2] Semi-Supervised Federated Heterogeneous Transfer Learning
    Feng, Siwei
    Li, Boyang
    Yu, Han
    Liu, Yang
    Yang, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [3] Federated Semi-Supervised Learning for Medical Image Segmentation via Pseudo-Label Denoising
    Qiu, Liang
    Cheng, Jierong
    Gao, Huxin
    Xiong, Wei
    Ren, Hongliang
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4672 - 4683
  • [4] Interactive Dual-model Learning for Semi-supervised Medical Image Segmentation
    Fang C.-W.
    Li X.
    Li Z.-Y.
    Jiao L.-C.
    Zhang D.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (04): : 805 - 819
  • [5] Consistency and adversarial semi-supervised learning for medical image segmentation
    Tang, Yongqiang
    Wang, Shilei
    Qu, Yuxun
    Cui, Zhihua
    Zhang, Wensheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 161
  • [6] Deep semi-supervised learning for medical image segmentation: A review
    Han, Kai
    Sheng, Victor S.
    Song, Yuqing
    Liu, Yi
    Qiu, Chengjian
    Ma, Siqi
    Liu, Zhe
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245
  • [7] Mutual consistency learning for semi-supervised medical image segmentation
    Wu, Yicheng
    Ge, Zongyuan
    Zhang, Donghao
    Xu, Minfeng
    Zhang, Lei
    Xia, Yong
    Cai, Jianfei
    MEDICAL IMAGE ANALYSIS, 2022, 81
  • [8] Mutual consistency learning for semi-supervised medical image segmentation
    Wu, Yicheng
    Ge, Zongyuan
    Zhang, Donghao
    Xu, Minfeng
    Zhang, Lei
    Xia, Yong
    Cai, Jianfei
    Medical Image Analysis, 2022, 81
  • [9] Reliable semi-supervised mutual learning framework for medical image segmentation
    Hang, Wenlong
    Bai, Kui
    Liang, Shuang
    Zhang, Qingfeng
    Wu, Qiang
    Jin, Yukun
    Wang, Qiong
    Qin, Jing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [10] Multi-task Heterogeneous Framework for Semi-supervised Medical Image Segmentation
    Cao, Jinghan
    Fan, Huijie
    Fu, Shengpeng
    Xu, Ling
    Chen, Xi'ai
    Lin, Sen
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT II, 2025, 15202 : 77 - 88