Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation

被引:4
|
作者
Ma, Yuxi [1 ]
Wang, Jiacheng [2 ]
Yang, Jing [1 ]
Wang, Liansheng [1 ,2 ]
机构
[1] Xiamen Univ, Natl Inst Data Sci Hlth & Med, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Sch Informat, Dept Comp Sci, Xiamen 361005, Peoples R China
关键词
Federated learning; knowledge distilling; medical image segmentation; semi-supervised learning;
D O I
10.1109/TMI.2023.3348982
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions. However, this task is often accompanied by challenges like sensitive data, privacy concerns, and expensive annotations. Current research focuses on personalized collaborative training of medical segmentation systems, ignoring that obtaining segmentation annotations is time-consuming and laborious. Achieving a perfect balance between annotation cost and segmentation performance while ensuring local model personalization has become a valuable direction. Therefore, this study introduces a novel Model-Heterogeneous Semi-Supervised Federated (HSSF) Learning framework. It proposes Regularity Condensation and Regularity Fusion to transfer autonomously selective knowledge to ensure the personalization between sites. In addition, to efficiently utilize unlabeled data and reduce the annotation burden, it proposes a Self-Assessment (SA) module and a Reliable Pseudo-Label Generation (RPG) module. The SA module generates self-assessment confidence in real-time based on model performance, and the RPG module generates reliable pseudo-label based on SA confidence. We evaluate our model separately on the Skin Lesion and Polyp Lesion datasets. The results show that our model performs better than other methods characterized by heterogeneity. Moreover, it exhibits highly commendable performance even in homogeneous designs, most notably in region-based metrics. The full range of resources can be readily accessed through the designated repository located at HSSF(github.com) on the platform of GitHub.
引用
收藏
页码:1804 / 1815
页数:12
相关论文
共 50 条
  • [21] Decoupled Consistency for Semi-supervised Medical Image Segmentation
    Chen, Faquan
    Fei, Jingjing
    Chen, Yaqi
    Huang, Chenxi
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 551 - 561
  • [22] Semi-supervised Medical Image Segmentation with Confidence Calibration
    Xu, Qisen
    Wu, Qian
    Hu, Yiqiu
    Jin, Bo
    Hu, Bin
    Zhu, Fengping
    Li, Yuxin
    Wang, Xiangfeng
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [23] Learning with limited annotations: A survey on deep semi-supervised learning for medical image segmentation
    Jiao, Rushi
    Zhang, Yichi
    Ding, Le
    Xue, Bingsen
    Zhang, Jicong
    Cai, Rong
    Jin, Cheng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [24] Effective Semi-Supervised Medical Image Segmentation With Probabilistic Representations and Prototype Learning
    Yuan, Yuchen
    Wang, Xi
    Yang, Xikai
    Heng, Pheng-Ann
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (03) : 1181 - 1193
  • [25] ISDNet: Importance Guided Semi-supervised Adversarial Learning for Medical Image Segmentation
    Ning, Qingtian
    Zhao, Xu
    Qian, Dahong
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 459 - 470
  • [26] Uncertainty-aware consistency learning for semi-supervised medical image segmentation
    Dong, Min
    Yang, Ating
    Wang, Zhenhang
    Li, Dezhen
    Yang, Jing
    Zhao, Rongchang
    KNOWLEDGE-BASED SYSTEMS, 2025, 309
  • [27] EVIL: EVIDENTIAL INFERENCE LEARNING FOR TRUSTWORTHY SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Chen, Yingyu
    Yang, Ziyuan
    Shen, Chenyu
    Wang, Zhiwen
    Qin, Yang
    Zhang, Yi
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [28] Semi-Supervised Medical Image Segmentation Based on Deep Consistent Collaborative Learning
    Zhao, Xin
    Wang, Wenqi
    JOURNAL OF IMAGING, 2024, 10 (05)
  • [29] Uncertainty Global Contrastive Learning Framework for Semi-Supervised Medical Image Segmentation
    Liu, Hengyang
    Ren, Pengcheng
    Yuan, Yang
    Song, Chengyun
    Luo, Fen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 433 - 442
  • [30] Combining contrastive learning and shape awareness for semi-supervised medical image segmentation
    Chen, Yaqi
    Chen, Faquan
    Huang, Chenxi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242