An extension of Aigner's theorem

被引:0
|
作者
Tho, Nguyen Xuan [1 ]
机构
[1] Hanoi Univ Sci & Technol, Hanoi, Vietnam
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 01期
关键词
Diophantine equations; Fermat equations; Algebraic number fields; Rational function fields; FERMATS LAST THEOREM; TERNARY DIOPHANTINE EQUATIONS; ALGEBRAIC POINTS; CLASS FIELDS;
D O I
10.1007/s00605-023-01913-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1957, Aigner (Monatsh Math 61:147-150, 1957) showed that the equations x(6) + y(6) = z(6) and x(9) + y(9) = z(9) have no solutions in any quadratic number field with xyz not equal 0. We show that Aigner's result holds for all equations x(3n) + y(3n) = z(3n), where n >= 2 is a positive integer. The proof combines Aigner's idea with deep results on Fermat's equation and its variants.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 50 条
  • [21] On an extension of Bochner's theorem
    Coulibaly, Pie
    Kangni, Kinvi
    AFRIKA MATEMATIKA, 2014, 25 (02) : 411 - 416
  • [22] AN EXTENSION OF CAMBERN'S THEOREM
    Botelho, Fernanda
    Jamison, James
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (03): : 181 - 188
  • [23] AN EXTENSION OF FRANKLIN'S THEOREM
    Borodin, O., V
    Ivanova, A. O.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1516 - 1521
  • [24] An Extension of Hall's Theorem
    Iosef Pinelis
    Annals of Combinatorics, 2002, 6 (1) : 103 - 106
  • [25] An extension of Ehrhard's theorem
    Kuelbs, J
    Li, WBV
    INTERACTION BETWEEN FUNCTIONAL ANALYSIS, HARMONIC ANALYSIS, AND PROBABILITY, 1996, 175 : 291 - 300
  • [26] On an extension of Niven's theorem
    Samart, Detchat
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2024, 55 (04) : 1024 - 1031
  • [27] Extension of Maschke's theorem
    Suksumran, Teerapong
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 2192 - 2203
  • [28] An extension of Pohlmeyer's theorem
    Rosten, Oliver J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (49)
  • [29] An extension of Chesneau's theorem
    Kou, Junke
    Liu, Youming
    STATISTICS & PROBABILITY LETTERS, 2016, 108 : 23 - 32
  • [30] An extension of Harrington's noncupping theorem
    喻良
    丁德成
    Science China(Information Sciences), 2003, (03) : 199 - 209