Diophantine equations;
Fermat equations;
Algebraic number fields;
Rational function fields;
FERMATS LAST THEOREM;
TERNARY DIOPHANTINE EQUATIONS;
ALGEBRAIC POINTS;
CLASS FIELDS;
D O I:
10.1007/s00605-023-01913-3
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In 1957, Aigner (Monatsh Math 61:147-150, 1957) showed that the equations x(6) + y(6) = z(6) and x(9) + y(9) = z(9) have no solutions in any quadratic number field with xyz not equal 0. We show that Aigner's result holds for all equations x(3n) + y(3n) = z(3n), where n >= 2 is a positive integer. The proof combines Aigner's idea with deep results on Fermat's equation and its variants.
机构:
Univ Oradea, Dept Math & Comp Sci, Univ St 1, Oradea 410087, Romania
Romania & Acad Romanian Scientists, Splaiul Independentei 54, Bucharest 050094, RomaniaUniv Oradea, Dept Math & Comp Sci, Univ St 1, Oradea 410087, Romania
Gal, Sorin G.
Niculescu, Constantin P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Craiova, Dept Math, Craiova 200585, Romania
Acad Romanian Scientists, Splaiul Independentei 54, Bucharest 050094, RomaniaUniv Oradea, Dept Math & Comp Sci, Univ St 1, Oradea 410087, Romania