An extension of Aigner's theorem

被引:0
|
作者
Tho, Nguyen Xuan [1 ]
机构
[1] Hanoi Univ Sci & Technol, Hanoi, Vietnam
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 01期
关键词
Diophantine equations; Fermat equations; Algebraic number fields; Rational function fields; FERMATS LAST THEOREM; TERNARY DIOPHANTINE EQUATIONS; ALGEBRAIC POINTS; CLASS FIELDS;
D O I
10.1007/s00605-023-01913-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1957, Aigner (Monatsh Math 61:147-150, 1957) showed that the equations x(6) + y(6) = z(6) and x(9) + y(9) = z(9) have no solutions in any quadratic number field with xyz not equal 0. We show that Aigner's result holds for all equations x(3n) + y(3n) = z(3n), where n >= 2 is a positive integer. The proof combines Aigner's idea with deep results on Fermat's equation and its variants.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 50 条