An extension of Chesneau's theorem

被引:11
|
作者
Kou, Junke [1 ]
Liu, Youming [1 ]
机构
[1] Beijing Univ Technol, Dept Appl Math, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Lower bound; Biased regression estimation; L-P risk; Wavelets; REGRESSION;
D O I
10.1016/j.spl.2015.09.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers a lower bound estimation over L-P (R-d) (1 <= p < infinity) risk for d dimensional regression functions in Besov spaces based on biased data. We provide the best possible lower bound up to a Inn factor by using wavelet methods. When the weight function w(x, y) equivalent to 1 and d = 1, our result reduces to Chesneau's theorem, see Chesneau (2007). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条