Piezoresistive effect in two-dimensional Dirac materials

被引:1
|
作者
Eliseev, D. S. [1 ,2 ]
Boev, M. V. [1 ,2 ]
Kovalev, V. M. [1 ,2 ]
Savenko, I. G. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Rzhanov Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
[3] Guangdong Technion Israel Inst Technol, Dept Phys, 241 Daxue Rd, Shantou 515063, Guangdong, Peoples R China
[4] Technion Israel Inst Technol, IL-32000 Haifa, Israel
[5] Guangdong Technion Israel Inst Technol, Guangdong Prov Key Lab Mat & Technol Energy Conve, Shantou 515063, Guangdong, Peoples R China
关键词
PIEZOELECTRICITY; MOS2;
D O I
10.1103/PhysRevB.108.L121403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Applying the Bir-Picus ansatz for strain-induced corrections to the electron momentum scattering time on impurities in a transition metal dichalcogenide monolayer, and taking the parameters of MoS2 for our estimations, we derive general analytical expressions describing the piezoresistive effect, the strain-induced corrections to (longitudinal) Drude conductivity, linear magnetoresistance, and the Hall conductivity of the monolayer for an arbitrary dependence of electron momentum scattering time on its energy. We show that a two-band model, even with the account of the trigonal warping of electron valleys, should be revisited for the description of the piezoresistive effect in the case of strongly degenerate electrons. Therefore, we extend the two-band model by accounting for the deformation of higher-energy bands and derive general expressions describing strain-induced corrections to the kinematic coefficients of the monolayer. Thus, the developed approach allows to estimate the deformation constants of higher-energy bands.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Existence of semi-Dirac cones and symmetry of two-dimensional materials
    Damljanovic, V.
    Gajic, R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (18)
  • [32] Semiclassical transport in two-dimensional Dirac materials with spatially variable tilt
    Hosseinzadeh, Abolfath
    Jafari, S. A.
    ANNALS OF PHYSICS, 2024, 471
  • [33] Optical properties of two-dimensional Dirac-Weyl materials with a flatband
    Ye, Li-Li
    Han, Chen-Di
    Lai, Ying-Cheng
    APPLIED PHYSICS LETTERS, 2024, 124 (06)
  • [34] Higher-order topological insulators in two-dimensional Dirac materials
    Xue, Yang
    Huan, Hao
    Zhao, Bao
    Luo, Youhua
    Zhang, Zhenyu
    Yang, Zhongqin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [35] Superconducting Proximity Effect on a Two-Dimensional Dirac Electron System
    Takane, Yositake
    Ando, Ryo
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2014, 83 (01)
  • [36] A two-dimensional Dirac fermion microscope
    Peter Bøggild
    José M. Caridad
    Christoph Stampfer
    Gaetano Calogero
    Nick Rübner Papior
    Mads Brandbyge
    Nature Communications, 8
  • [37] On Perturbed Two-Dimensional Dirac Operators
    Suo Zhao
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1249 - 1263
  • [38] A two-dimensional Dirac fermion microscope
    Boggild, Peter
    Caridad, Jose M.
    Stampfer, Christoph
    Calogero, Gaetano
    Papior, Nick Rubner
    Brandbyge, Mads
    NATURE COMMUNICATIONS, 2017, 8 : 15783
  • [39] On Perturbed Two-Dimensional Dirac Operators
    Zhao, Suo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1249 - 1263
  • [40] Dirac cones in two-dimensional borane
    Martinez-Canales, Miguel
    Galeev, Timur R.
    Boldyrev, Alexander I.
    Pickard, Chris J.
    PHYSICAL REVIEW B, 2017, 96 (19)