On Perturbed Two-Dimensional Dirac Operators

被引:0
|
作者
Suo Zhao
机构
[1] Sichuan University,College of Mathematics
关键词
Dirac operator; Schrödinger operator; Gelfand-Dickey hierarchy; Formal operator; 34L40; 35J10; 65N99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a perturbed two-dimensional Dirac operator D, which solves D2=Δ2+u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^2=\Delta _2+u$$\end{document} with non-vanishing potential u=u(x,y)≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=u(x,y)\ne 0$$\end{document}. By introducing the so-called formal operators, we prove that a regular and normal solution D exists, if and only if u is splitting, and that is u(x,y)=f(x)+g(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(x,y)=f(x)+g(y)$$\end{document}.
引用
收藏
页码:1249 / 1263
页数:14
相关论文
共 50 条
  • [1] On Perturbed Two-Dimensional Dirac Operators
    Zhao, Suo
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (03) : 1249 - 1263
  • [2] Tunneling Estimates for Two-Dimensional Perturbed Magnetic Dirac Systems
    Cardenas, Esteban
    Pavez, Benjamin
    Stockmeyer, Edgardo
    [J]. ANNALES HENRI POINCARE, 2024,
  • [3] The Moutard transformation of two-dimensional Dirac operators and Mobius geometry
    Taimanov, I. A.
    [J]. MATHEMATICAL NOTES, 2015, 97 (1-2) : 124 - 135
  • [4] Self-Adjointness of Two-Dimensional Dirac Operators on Domains
    Rafael D. Benguria
    Søren Fournais
    Edgardo Stockmeyer
    Hanne Van Den Bosch
    [J]. Annales Henri Poincaré, 2017, 18 : 1371 - 1383
  • [5] Two-Dimensional Dirac Operators with Interactions on Unbounded Smooth Curves
    Rabinovich, V
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (04) : 524 - 542
  • [6] Two-Dimensional Dirac Operators with Interactions on Unbounded Smooth Curves
    V. Rabinovich
    [J]. Russian Journal of Mathematical Physics, 2021, 28 : 524 - 542
  • [7] A comparison of the eigenvalues of the Dirac and Laplace operators on a two-dimensional torus
    Ilka Agricola
    Bernd Ammann
    Thomas Friedrich
    [J]. manuscripta mathematica, 1999, 100 : 231 - 258
  • [8] A comparison of the eigenvalues of the Dirac and Laplace operators on a two-dimensional torus
    Agricola, I
    Ammann, B
    Friedrich, T
    [J]. MANUSCRIPTA MATHEMATICA, 1999, 100 (02) : 231 - 258
  • [9] Self-Adjointness of Two-Dimensional Dirac Operators on Domains
    Benguria, Rafael D.
    Fournais, Soren
    Stockmeyer, Edgardo
    Van Den Bosch, Hanne
    [J]. ANNALES HENRI POINCARE, 2017, 18 (04): : 1371 - 1383
  • [10] Self-adjointness of two-dimensional Dirac operators on corner domains
    Pizzichillo, Fabio
    Van den Bosch, Hanne
    [J]. JOURNAL OF SPECTRAL THEORY, 2021, 11 (03) : 1043 - 1079