Self-Adjointness of Two-Dimensional Dirac Operators on Domains

被引:0
|
作者
Rafael D. Benguria
Søren Fournais
Edgardo Stockmeyer
Hanne Van Den Bosch
机构
[1] Pontificia Universidad Católica de Chile,Instituto de Física
[2] Aarhus University,Department of Mathematics
来源
Annales Henri Poincaré | 2017年 / 18卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider Dirac operators defined on planar domains. For a large class of boundary conditions, we give a direct proof of their self-adjointness in the Sobolev space H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}.
引用
收藏
页码:1371 / 1383
页数:12
相关论文
共 50 条
  • [1] Self-Adjointness of Two-Dimensional Dirac Operators on Domains
    Benguria, Rafael D.
    Fournais, Soren
    Stockmeyer, Edgardo
    Van Den Bosch, Hanne
    [J]. ANNALES HENRI POINCARE, 2017, 18 (04): : 1371 - 1383
  • [2] Self-adjointness of two-dimensional Dirac operators on corner domains
    Pizzichillo, Fabio
    Van den Bosch, Hanne
    [J]. JOURNAL OF SPECTRAL THEORY, 2021, 11 (03) : 1043 - 1079
  • [3] ON SELF-ADJOINTNESS OF SINGULAR DIRAC OPERATORS
    徐言博
    曹之江
    [J]. Annals of Applied Mathematics, 1998, (02) : 266 - 276
  • [5] CONDITIONS OF SELF-ADJOINTNESS OF SCHRODINGER AND DIRAC OPERATORS
    LEVITAN, BM
    OTELBAEV, M
    [J]. DOKLADY AKADEMII NAUK SSSR, 1977, 235 (04): : 768 - 771
  • [6] Self-adjointness for Dirac operators via Hardy-Dirac inequalities
    Esteban, Maria J.
    Loss, M.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (11)
  • [7] General i-shell interactions for the two-dimensional Dirac operator: self-adjointness and approximation
    Cassano, Biagio
    Lotoreichik, Vladimir
    Mas, Albert
    Tusek, Matej
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (04) : 1443 - 1492
  • [8] Self-adjointness and spectral properties of Dirac operators with magnetic links
    Portmann, Fabian
    Sok, Jeremy
    Solovej, Jan Philip
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 114 - 157
  • [9] Essential self-adjointness of n-dimensional Dirac operators with a variable mass term
    Kalf, H
    Yamada, O
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) : 2667 - 2676
  • [10] Essential self-adjointness of n-dimensional Dirac operators with a variable mass term
    Kalf, H
    Yamada, O
    [J]. PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 165 - 167