Piezoresistive effect in two-dimensional Dirac materials

被引:1
|
作者
Eliseev, D. S. [1 ,2 ]
Boev, M. V. [1 ,2 ]
Kovalev, V. M. [1 ,2 ]
Savenko, I. G. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Rzhanov Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
[3] Guangdong Technion Israel Inst Technol, Dept Phys, 241 Daxue Rd, Shantou 515063, Guangdong, Peoples R China
[4] Technion Israel Inst Technol, IL-32000 Haifa, Israel
[5] Guangdong Technion Israel Inst Technol, Guangdong Prov Key Lab Mat & Technol Energy Conve, Shantou 515063, Guangdong, Peoples R China
关键词
PIEZOELECTRICITY; MOS2;
D O I
10.1103/PhysRevB.108.L121403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Applying the Bir-Picus ansatz for strain-induced corrections to the electron momentum scattering time on impurities in a transition metal dichalcogenide monolayer, and taking the parameters of MoS2 for our estimations, we derive general analytical expressions describing the piezoresistive effect, the strain-induced corrections to (longitudinal) Drude conductivity, linear magnetoresistance, and the Hall conductivity of the monolayer for an arbitrary dependence of electron momentum scattering time on its energy. We show that a two-band model, even with the account of the trigonal warping of electron valleys, should be revisited for the description of the piezoresistive effect in the case of strongly degenerate electrons. Therefore, we extend the two-band model by accounting for the deformation of higher-energy bands and derive general expressions describing strain-induced corrections to the kinematic coefficients of the monolayer. Thus, the developed approach allows to estimate the deformation constants of higher-energy bands.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Two-dimensional materials with Dirac cones: Graphynes containing heteroatoms
    Malko, Daniel
    Neiss, Christian
    Goerling, Andreas
    PHYSICAL REVIEW B, 2012, 86 (04)
  • [22] Optical valleytronics of impurity states in two-dimensional Dirac materials
    Ko, Dogyun
    Morozov, A., V
    Kovalev, V. M.
    Savenko, I. G.
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [23] Optical response of two-dimensional Dirac materials with a flat band
    Han, Chen-Di
    Lai, Ying-Cheng
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [24] The Talbot Effect for two-dimensional massless Dirac fermions
    Jamie D. Walls
    Daniel Hadad
    Scientific Reports, 6
  • [25] The Talbot Effect for two-dimensional massless Dirac fermions
    Walls, Jamie D.
    Hadad, Daniel
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Magneto-optical Kerr effect in spin split two-dimensional massive Dirac materials
    Catarina, G.
    Peres, N. M. R.
    Fernandez-Rossier, J.
    2D MATERIALS, 2020, 7 (02)
  • [27] Edge photogalvanic effect caused by optical alignment of carrier momenta in two-dimensional Dirac materials
    Durnev, M., V
    Tarasenko, S. A.
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [28] Bipolar electron waveguides in two-dimensional materials with tilted Dirac cones
    Hartmann, R. R.
    Portnoi, M. E.
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [29] Full consideration of acoustic phonon scatterings in two-dimensional Dirac materials
    Van Nguyen, Khoe
    Chang, Yia-Chung
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (07) : 3999 - 4009
  • [30] Quantum thermoelectrics based on two-dimensional semi-Dirac materials
    Mawrie, Alestin
    Muralidharan, Bhaskaran
    PHYSICAL REVIEW B, 2019, 100 (08)