Piezoresistive effect in two-dimensional Dirac materials

被引:1
|
作者
Eliseev, D. S. [1 ,2 ]
Boev, M. V. [1 ,2 ]
Kovalev, V. M. [1 ,2 ]
Savenko, I. G. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, Rzhanov Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, Novosibirsk 630073, Russia
[3] Guangdong Technion Israel Inst Technol, Dept Phys, 241 Daxue Rd, Shantou 515063, Guangdong, Peoples R China
[4] Technion Israel Inst Technol, IL-32000 Haifa, Israel
[5] Guangdong Technion Israel Inst Technol, Guangdong Prov Key Lab Mat & Technol Energy Conve, Shantou 515063, Guangdong, Peoples R China
关键词
PIEZOELECTRICITY; MOS2;
D O I
10.1103/PhysRevB.108.L121403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Applying the Bir-Picus ansatz for strain-induced corrections to the electron momentum scattering time on impurities in a transition metal dichalcogenide monolayer, and taking the parameters of MoS2 for our estimations, we derive general analytical expressions describing the piezoresistive effect, the strain-induced corrections to (longitudinal) Drude conductivity, linear magnetoresistance, and the Hall conductivity of the monolayer for an arbitrary dependence of electron momentum scattering time on its energy. We show that a two-band model, even with the account of the trigonal warping of electron valleys, should be revisited for the description of the piezoresistive effect in the case of strongly degenerate electrons. Therefore, we extend the two-band model by accounting for the deformation of higher-energy bands and derive general expressions describing strain-induced corrections to the kinematic coefficients of the monolayer. Thus, the developed approach allows to estimate the deformation constants of higher-energy bands.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Two-dimensional Dirac signature of germanene
    Zhang, L.
    Bampoulis, P.
    van Houselt, A.
    Zandvliet, H. J. W.
    APPLIED PHYSICS LETTERS, 2015, 107 (11)
  • [42] Magnus Hall Effect in Two-Dimensional Materials
    肖瑞春
    王孜博
    张智强
    刘军伟
    江华
    Chinese Physics Letters, 2021, 38 (05) : 90 - 97
  • [43] Magnus Hall Effect in Two-Dimensional Materials
    Xiao, Rui-Chun
    Wang, Zibo
    Zhang, Zhi-Qiang
    Liu, Junwei
    Jiang, Hua
    CHINESE PHYSICS LETTERS, 2021, 38 (05)
  • [44] Carrier mobility of two-dimensional Dirac materials: the influence of optical phonon scattering
    Wang, Yingqi
    Wang, Zijian
    Cheng, Ting
    Liu, Zhirong
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 35 (23491-23501) : 23491 - 23501
  • [45] Light-induced topological phases in two-dimensional gapped Dirac materials
    Yang, Qi
    Tong, Qingjun
    PHYSICAL REVIEW B, 2022, 106 (11)
  • [46] Optimal band gap for improved thermoelectric performance of two-dimensional Dirac materials
    Hasdeo, Eddwi H.
    Krisna, Lukas P. A.
    Hanna, Muhammad Y.
    Gunara, Bobby E.
    Hung, Nguyen T.
    Nugraha, Ahmad R. T.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (03)
  • [47] Scanning tunneling spectroscopy of two-dimensional Dirac materials on substrates with a band gap
    Zandvliet, Harold J. W.
    Yao, Qirong
    Zhang, Lijie
    Bampoulis, Pantelis
    Jiao, Zhen
    PHYSICAL REVIEW B, 2022, 106 (08)
  • [48] Signatures of Lifshitz transition in the optical conductivity of two-dimensional tilted Dirac materials
    Tan, Chao -Yang
    Hou, Jian-Tong
    Yan, Chang-Xu
    Guo, Hong
    Chang, Hao-Ran
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [49] Mirror symmetry origin of Dirac cone formation in rectangular two-dimensional materials
    Qin, Xuming
    Liu, Yi
    Yang, Gui
    Zhao, Dongqiu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (12) : 6619 - 6625
  • [50] Pseudogauge field driven acoustoelectric current in two-dimensional hexagonal Dirac materials
    Bhalla, Pankaj
    Vignale, Giovanni
    Rostami, Habib
    PHYSICAL REVIEW B, 2022, 105 (12)