Pt clusters in carbon network to enhance photocatalytic CO2 and benzene conversion of WOx/g-C3N4 nanosheets

被引:43
|
作者
Zhang, Xiao [1 ,3 ,4 ]
Matras-Postolek, Katarzyna [1 ]
Yang, Ping [2 ]
Jiang, San Ping [3 ,4 ]
机构
[1] Cracow Univ Technol, Fac Chem Engn & Technol, Warszawska 24 St, PL-31155 Krakow, Poland
[2] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[3] Curtin Univ, WA Sch Mines Minerals, Perth, WA 6845, Australia
[4] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
基金
中国国家自然科学基金;
关键词
G-C3N4; WOx; Pt clusters; CO2; Benzene; Photocatalysis; G-C3N4; NANOSHEETS; WATER; EVOLUTION; 2D; HETEROJUNCTIONS; CRYSTALLINITY; NANOPARTICLES; ARCHITECTURES; COCATALYSTS; REDUCTION;
D O I
10.1016/j.carbon.2023.118337
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noble metals in carbon networks dramatically improve the carrier separation and transfer efficiencies of layered graphic carbon nitride (g-C3N4) based heterostructures for efficient CO2 and benzene photocatalytic conversion. Here, Pt clusters are homogeneously incorporated into ultrathin g-C3N4 nanosheets via multi-step treatment method using the combinations of mechano-chemical pre-reaction and two-step thermal condensation processes. Small Pt nanoparticles with diameters of less than 5 nm are observed and WOx nanobelts with increased oxygen vacancies (as the active sites) are horizontally grown on the thin Pt-g-C3N4 nanosheets. The photocatalytic activities of the constructed composite materials are evaluated under full solar spectrum irradiation condition including water splitting, CO2 photoreduction, and benzene to phenol conversion. The WOx/Pt-g-C3N4 nanosheet heterostructures with optimized preparation condition and without adding any co-catalyst reveals enhanced H-2 generation (5267 mu molg(-1)h(-1)) and CO2 photoreduction (5.89 and 3.12 mu molg(-1)h(-1) for CO and CH4 conversion rate, respectively), as well as improved benzene to phenol conversion (89.0%) and selectivity (98.2%). The presence of Pt clusters in the heterostructures improves charge transport in-between g-C3N4 and WOx, thus enhances the charge separation efficiency of the composite material. Detailed photocatalytic mechanisms are discussed on the alteration from S-scheme WOx/g-C3N4 heterostructure to Z-scheme WOx/Pt-g-C3N4 heterostructure.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The g-C3N4 Nanosheets Separated by PS for Photocatalytic Degradation of Dye
    Yu, Qingbo
    Fang, Songhui
    Wang, Xiaoze
    JOURNAL OF NANO RESEARCH, 2017, 49 : 215 - 224
  • [32] Preparation and Photocatalytic Activity of Holey Ultrathin g-C3N4 Nanosheets-Supported Pt Composite
    Shuai-Shuai, Ma
    Jian-Dong, Gu
    Yuan, Gao
    Yu-Qing, Zong
    Jin-Juan, Xue
    Zhao-Lian, Ye
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (08) : 1439 - 1448
  • [33] g-C3N4/dendritic fibrous nanosilica doped with potassium for photocatalytic CO2 reduction
    Rawool, Sushma A.
    Kar, Yusuf
    Polshettiwar, Vivek
    MATERIALS ADVANCES, 2022, 3 (23): : 8449 - 8459
  • [34] Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4
    Cao, Shaowen
    Li, Yao
    Zhu, Bicheng
    Jaroniec, Mietek
    Yu, Jiaguo
    JOURNAL OF CATALYSIS, 2017, 349 : 208 - 217
  • [35] Enhanced performance of attapulgite-supported g-C3N4 for photocatalytic CO2 reduction
    Yang, Wenqin
    Zhou, Yu
    Zhao, Jiale
    She, Houde
    Zhang, Yang
    Peng, Jianhong
    Huang, Jingwei
    Wang, Lei
    Wang, Qizhao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [36] Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (01)
  • [37] Prominent COF, g-C3N4, and Their Heterojunction Materials for Selective Photocatalytic CO2 Reduction
    Bika, Panagiota
    Papailias, Ilias
    Giannakopoulou, Tatiana
    Tampaxis, Christos
    Steriotis, Theodore A.
    Trapalis, Christos
    Dallas, Panagiotis
    CATALYSTS, 2023, 13 (10)
  • [38] Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Papailias, Ilias
    Todorova, Nadia
    Giannakopoulou, Tatiana
    Dallas, Panagiotis
    Devlin, Eamonn
    Ioannidis, Nikolaos
    Trapalis, Christos
    PHOTOCHEM, 2021, 1 (03): : 462 - 476
  • [39] Incorporation of Cesium Lead Halide Perovskites into g-C3N4 for Photocatalytic CO2 Reduction
    Cheng, Ruolin
    Jin, Handong
    Roeffaers, Maarten B. J.
    Hofkens, Johan
    Debroye, Elke
    ACS OMEGA, 2020, 5 (38): : 24495 - 24503
  • [40] TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance
    Wang, Huiqin
    Li, Hongda
    Chen, Zhuowen
    Li, Jinze
    Li, Xin
    Huo, Pengwei
    Wang, Qian
    SOLID STATE SCIENCES, 2020, 100