Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4

被引:332
|
作者
Cao, Shaowen [1 ]
Li, Yao [1 ]
Zhu, Bicheng [1 ]
Jaroniec, Mietek [2 ]
Yu, Jiaguo [1 ,3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA
[3] King Abdulaziz Univ, Dept Phys, Fac Sci, Jeddah 21589, Saudi Arabia
基金
中国博士后科学基金;
关键词
CO2; photoreduction; Pd cocatalyst; Surface structure; Charge transfer; GRAPHITIC CARBON NITRIDE; FORMIC-ACID OXIDATION; IN-SITU FTIR; VISIBLE-LIGHT; HYDROGEN-PRODUCTION; PALLADIUM NANOCRYSTALS; ARTIFICIAL PHOTOSYNTHESIS; METHANOL SYNTHESIS; ANATASE TIO2; NANOPARTICLES;
D O I
10.1016/j.jcat.2017.02.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The separation and transfer of charge carriers, adsorption of CO2 molecules, and desorption of product molecules are crucial factors that affect the CO2 photoreduction process. Herein, we demonstrate the significant facet effect of Pd cocatalyst toward CO2 photoreduction over graphitic carbon nitride (g-C3N4). The surface atomic structure of Pd cocatalyst can be precisely controlled by adjusting the amount of {111} and {100} facets to modulate the interfacial charge carrier transfer, CO2 adsorption and CH3OH desorption. It is shown that the tetrahedral Pd nanocrystals with exposed {111} facets function as a more efficient cocatalyst as compared to cubic Pd nanocrystals with exposed {100} facets, which is reflected by enhancing the CO2 photoreduction over graphitic carbon nitride. The origin of such remarkable shape induced effect is explained on the basis of experimental studies of charge transfer dynamics and the atomic-scale DFT modeling of CO2 adsorption and CH3OH desorption. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:208 / 217
页数:10
相关论文
共 50 条
  • [1] Photocatalytic CO2 Reduction over g-C3N4 Based Materials
    Cai, Wei-Qin
    Zhang, Feng-Jun
    Kong, Cui
    Kai, Chun-Mei
    Oh, Won-Chun
    [J]. KOREAN JOURNAL OF MATERIALS RESEARCH, 2020, 30 (11): : 581 - 588
  • [2] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    [J]. RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)
  • [3] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [4] Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Papailias, Ilias
    Todorova, Nadia
    Giannakopoulou, Tatiana
    Dallas, Panagiotis
    Devlin, Eamonn
    Ioannidis, Nikolaos
    Trapalis, Christos
    [J]. PHOTOCHEM, 2021, 1 (03): : 462 - 476
  • [5] NiO/g-C3N4 quantum dots for photocatalytic CO2 reduction
    Tao, Feifei
    Dong, Yali
    Yang, Lingang
    [J]. APPLIED SURFACE SCIENCE, 2023, 638
  • [6] A review on g-C3N4 for photocatalytic water splitting and CO2 reduction
    Ye, Sheng
    Wang, Rong
    Wu, Ming-Zai
    Yuan, Yu-Peng
    [J]. APPLIED SURFACE SCIENCE, 2015, 358 : 15 - 27
  • [7] g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction
    Sun, Zhuxing
    Wang, Haiqiang
    Wu, Zhongbiao
    Wang, Lianzhou
    [J]. CATALYSIS TODAY, 2018, 300 : 160 - 172
  • [8] Photocatalytic CO2 reduction over g-C3N4 based heterostructures: Recent progress and prospects
    Ghosh, Utpal
    Majumdar, Ankush
    Pal, Anjali
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [9] CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction
    Zhao, Xiaoxue
    Guan, Jingru
    Li, Jinze
    Li, Xin
    Wang, Huiqin
    Huo, Pengwei
    Yan, Yongsheng
    [J]. APPLIED SURFACE SCIENCE, 2021, 537
  • [10] Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity
    Shi, Guodong
    Yang, Lin
    Liu, Zhuowen
    Chen, Xiao
    Zhou, Jianqing
    Yu, Ying
    [J]. APPLIED SURFACE SCIENCE, 2018, 427 : 1165 - 1173