TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance

被引:55
|
作者
Wang, Huiqin [1 ]
Li, Hongda [1 ]
Chen, Zhuowen [1 ]
Li, Jinze [2 ]
Li, Xin [2 ]
Huo, Pengwei [2 ]
Wang, Qian [1 ]
机构
[1] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Inst Green Chem & Chem Technol, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
TiO2; C3N4; Ball-milling and calcination; Composite photocatalyst; Reduction of CO2; IN-SITU SYNTHESIS; COMPOSITE PHOTOCATALYST; EFFICIENT PHOTOCATALYST; CARBON-DIOXIDE; HETEROJUNCTION; PHOTOREDUCTION; DEGRADATION; HYBRID; NANOCOMPOSITES; PHOTODEGRADATION;
D O I
10.1016/j.solidstatesciences.2019.106099
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Titanium dioxide (TiO2) modified g-C3N4 for composite photocatalysts were fabricated by using ball-milling and calcination. The physicochemical properties of as-obtained photocatalysts were characterized by XRD, XPS, SEM, TEM, UV-vis DRS, PL and Photocurrents. The results show that the heterostructure successfully formed between TiO2 and C3N4, and the heterostructure could effectively enhance the separation rate of the photogenerated electrons and holes. Also the positions of conduction band (CB) and valence band (VB) changed with improving the amount of TiO2 in the as-prepared photocatalysts. The photocatalytic activities of as-prepared photocatalysts were investigated by photoreduction of CO2, the results exhibit that the composite photocatalysts clearly improve the photoreduction of CO2 to CH4 and CO. The highest yields of CH4 and CO are of 72.2 and 56.2 mu mol g(-1) at an optimized modified amounts of TiO2 under 4 h irradiation of 8 W UV lamp, respectively. The strategy of TiO2 modified C3N4 could successfully obtain effective photocatalyst for CO2 conversion.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Efficient Electron Transfer in g-C3N4/TiO2 Heterojunction for Enhanced Photocatalytic CO2 Reduction
    Jiang, Peng
    Yu, Yang
    Wang, Kun
    Liu, Wenrui
    [J]. CATALYSTS, 2024, 14 (06)
  • [2] g-C3N4/TiO2 NANOCOMPOSITES AND THEIR APPLICATION IN PHOTOCATALYTIC CO2 REDUCTION: A MINIREVIEW
    Manrique-Holguin, M.
    Alvear-Daza, J. J.
    Rengifo-Herrera, J. A.
    Pizzio, L. R.
    [J]. LATIN AMERICAN APPLIED RESEARCH, 2023, 53 (01) : 71 - 76
  • [3] Phosphorylation of g-C3N4 for enhanced photocatalytic CO2 reduction
    Ye, Liqun
    Wu, Dan
    Chu, Ka Him
    Wang, Bo
    Xie, Haiquan
    Yip, Ho Yin
    Wong, Po Keung
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 304 : 376 - 383
  • [4] Enhanced performance of attapulgite-supported g-C3N4 for photocatalytic CO2 reduction
    Yang, Wenqin
    Zhou, Yu
    Zhao, Jiale
    She, Houde
    Zhang, Yang
    Peng, Jianhong
    Huang, Jingwei
    Wang, Lei
    Wang, Qizhao
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [5] Reuse of TiO2 from Waste SCR Catalyst to Synthesis g-C3N4/TiO2 for Photocatalytic CO2 Reduction
    Huo, Yiting
    Chang, Zhidong
    Zhang, Xian
    Dong, Bin
    [J]. WASTE AND BIOMASS VALORIZATION, 2024, : 6775 - 6785
  • [6] In situ growth of TiO2 nanocrystals on g-C3N4 for enhanced photocatalytic performance
    Li, Hong
    Zhou, Liang
    Wang, Lingzhi
    Liu, Yongdi
    Lei, Juying
    Zhang, Jinlong
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (26) : 17406 - 17412
  • [7] Au tailored on g-C3N4/TiO2 heterostructure for enhanced photocatalytic performance
    Wei, Tingcha
    Xu, Juan
    Kan, Caixia
    Zhang, Le
    Zhu, Xingzhong
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 894
  • [8] Fabrication of rGO and g-C3N4 co-modified TiO2 nanotube arrays photoelectrodes with enhanced photocatalytic performance
    Zhang, Bin
    Ma, Xiaohan
    Ma, Jun
    Zhou, Yuanming
    Liu, Guocheng
    Ma, Dong
    Deng, Zhihan
    Luo, Mingming
    Xin, Yanjun
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 577 : 75 - 85
  • [9] Mechanistic insight into photocatalytic CO2 reduction by a Z-scheme g-C3N4/TiO2 heterostructure
    Wang, Shuo
    Zhao, Tingting
    Tian, Yu
    Yan, Likai
    Su, Zhongmin
    [J]. NEW JOURNAL OF CHEMISTRY, 2021, 45 (26) : 11474 - 11480
  • [10] Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: a review
    Zhang, Xiao
    Jiang, San Ping
    [J]. MATERIALS TODAY ENERGY, 2022, 23