Disproof of a conjecture on the minimum spectral radius and the domination number

被引:1
|
作者
Hu, Yarong [1 ,3 ]
Lou, Zhenzhen [2 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[3] Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Domination number; Minimizer graph; GRAPHS; TREES;
D O I
10.1016/j.laa.2023.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gn,& gamma; be the set of all connected graphs on n vertices with domination number & gamma;. A graph is called a minimizer graph if it attains the minimum spectral radius among Gn,& gamma;. Very recently, Liu, Li and Xie (2023) [17] proved that the minimizer graph over all graphs in Gn,& gamma; must be a tree. Moreover, they determined the minimizer graph among Gn,Ln21 for even n, and posed the conjecture on the minimizer graph among Gn,L n2 1 for odd n. In this paper, we disprove the conjecture and completely determine the unique minimizer graph among Gn,L n2 1 for odd n. & COPY; 2023 Published by Elsevier Inc.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [41] AN EFFECTIVE DISPROOF OF THE MERTENS CONJECTURE
    PINTZ, J
    ASTERISQUE, 1987, (147-48) : 325 - 333
  • [42] On a conjecture concerning total domination subdivision number in graphs
    Kosari, S.
    Shao, Z.
    Khoeilar, R.
    Karami, H.
    Sheikholeslami, S. M.
    Hao, G.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 154 - 157
  • [43] A proof of a conjecture on the paired-domination subdivision number
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Chellali, Mustapha
    Khoeilar, Rana
    Karami, Hossein
    GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [44] A proof of a conjecture on the paired-domination subdivision number
    Zehui Shao
    Seyed Mahmoud Sheikholeslami
    Mustapha Chellali
    Rana Khoeilar
    Hossein Karami
    Graphs and Combinatorics, 2022, 38
  • [45] On a conjecture about the spectral radius of block graphs
    Zhao, Jing
    Liu, Huiqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 659 : 1 - 9
  • [46] On AutoGraphiX Conjecture Regarding Domination Number and Average Eccentricity
    Pei, Li-Dan
    Pan, Xiang-Feng
    Tian, Jing
    Peng, Gui-Qin
    FILOMAT, 2019, 33 (03) : 699 - 710
  • [47] Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number
    Kosari, Saeed
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Karami, Hossein
    Volkmann, Lutz
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1351 - 1355
  • [48] About AutoGraphiX Conjecture on Domination Number and Remoteness of Graphs
    Pei, Lidan
    MATHEMATICS, 2022, 10 (19)
  • [49] Disprove of a Conjecture on the Doubly Connected Domination Subdivision Number
    Saeed Kosari
    Zehui Shao
    Seyed Mahmoud Sheikholeslami
    Hossein Karami
    Lutz Volkmann
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1351 - 1355
  • [50] Chromatic number and spectral radius
    Nikiforov, Vladimir
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 810 - 814