Disproof of a conjecture on the minimum spectral radius and the domination number

被引:1
|
作者
Hu, Yarong [1 ,3 ]
Lou, Zhenzhen [2 ]
Huang, Qiongxiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[3] Yuncheng Univ, Sch Math & Informat Technol, Yuncheng 044000, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral radius; Domination number; Minimizer graph; GRAPHS; TREES;
D O I
10.1016/j.laa.2023.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gn,& gamma; be the set of all connected graphs on n vertices with domination number & gamma;. A graph is called a minimizer graph if it attains the minimum spectral radius among Gn,& gamma;. Very recently, Liu, Li and Xie (2023) [17] proved that the minimizer graph over all graphs in Gn,& gamma; must be a tree. Moreover, they determined the minimizer graph among Gn,Ln21 for even n, and posed the conjecture on the minimizer graph among Gn,L n2 1 for odd n. In this paper, we disprove the conjecture and completely determine the unique minimizer graph among Gn,L n2 1 for odd n. & COPY; 2023 Published by Elsevier Inc.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [21] On a conjecture for the signless Laplacian spectral radius of cacti with given matching number
    Shen, Yun
    You, Lihua
    Zhang, Minjie
    Li, Shuchao
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03): : 457 - 474
  • [22] On the minimum spectral radius of graphs with given order and dissociation number
    Zhao, Jing
    Liu, Huiqing
    Xiong, Jin
    DISCRETE APPLIED MATHEMATICS, 2025, 361 : 487 - 501
  • [23] A conjecture on the spectral radius of graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 (588) : 74 - 80
  • [24] A Proof of a Conjecture on the Connected Domination Number
    Kosari, S.
    Shao, Z.
    Sheikholeslami, S. M.
    Chellali, M.
    Khoeilar, R.
    Karami, H.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (06) : 3523 - 3533
  • [25] A Proof of a Conjecture on the Connected Domination Number
    S. Kosari
    Z. Shao
    S. M. Sheikholeslami
    M. Chellali
    R. Khoeilar
    H. Karami
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 3523 - 3533
  • [26] DISPROOF OF THE MERTENS CONJECTURE
    ODLYZKO, AM
    RIELE, HJJT
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1985, 357 : 138 - 160
  • [27] DISPROOF OF A CONJECTURE OF JACOBSTHAL
    Hajdu, L.
    Saradha, N.
    MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2461 - 2471
  • [28] The minimum signless Laplacian spectral radius of graphs with given independence number
    Li, Ruilin
    Shi, Jinsong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (8-10) : 1614 - 1622
  • [29] THE MINIMUM SPECTRAL RADIUS OF SIGNLESS LAPLACIAN OF GRAPHS WITH A GIVEN CLIQUE NUMBER
    Su, Li
    Li, Hong-Hai
    Zhang, Jing
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 95 - 102
  • [30] Proof of a conjecture on the ε-spectral radius of trees
    Li, Jianping
    Qiu, Leshi
    Zhang, Jianbin
    AIMS MATHEMATICS, 2023, 8 (02): : 4363 - 4371