On a conjecture for the signless Laplacian spectral radius of cacti with given matching number

被引:10
|
作者
Shen, Yun [1 ]
You, Lihua [1 ]
Zhang, Minjie [2 ]
Li, Shuchao [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou, Guangdong, Peoples R China
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2017年 / 65卷 / 03期
基金
中国国家自然科学基金;
关键词
Cactus; signless Laplacian matrix; spectral radius; matching number; K-PENDANT VERTICES; PERFECT MATCHINGS; LARGEST EIGENVALUE; UNICYCLIC GRAPHS; RANDIC INDEX; CACTUSES; BOUNDS; TREES; MATRICES;
D O I
10.1080/03081087.2016.1189494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected graph G is a cactus if any two of its cycles have at most one common vertex. Let l(n)(m) be the set of cacti on n vertices with matching number m. S.C. Li and M.J. Zhang determined the unique graph with the maximum signless Laplacian spectral radius among all cacti in l(n)(m) with n = 2m. In this paper, we characterize the case n >= 2m + 1. This confirms the conjecture of Li and Zhang (Li SC, Zhang MJ, On the signless Laplacian index of cacti with a given number of pendant vetices, Linear Algebra Appl. 2012; 436: 44004411). Further, we characterize the unique graph with the maximum signless Laplacian spectral radius among all cacti on n vertices.
引用
收藏
页码:457 / 474
页数:18
相关论文
共 50 条
  • [1] On the maximal signless Laplacian spectral radius of graphs with given matching number
    Yu, Guihai
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2008, 84 (09) : 163 - 166
  • [2] On the Signless Laplacian Spectral Radius of Cacti
    Chen, Mingzhu
    Zhou, Bo
    [J]. CROATICA CHEMICA ACTA, 2016, 89 (04) : 493 - 498
  • [3] The signless p-Laplacian spectral radius of graphs with given matching number
    Chen, Zhouyang
    Feng, Lihua
    Liu, Weijun
    Lu, Lu
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (14): : 2366 - 2374
  • [4] Note on distance signless Laplacian spectral radius under given matching number
    Liu, Yan
    Yan, Jin
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (06): : 1185 - 1190
  • [5] The maximal (signless Laplacian) spectral radius of connected graphs with given matching number
    Chen, Xiaodan
    Lu, Fuliang
    [J]. ARS COMBINATORIA, 2016, 126 : 237 - 247
  • [6] On the maximum (signless) Laplacian spectral radius of the cacti
    Fan, Dandan
    Mu, Shanzhi
    Chen, Hua
    Wang, Guoping
    [J]. UTILITAS MATHEMATICA, 2018, 109 : 115 - 127
  • [7] The Signless Laplacian Spectral Radius of Graphs with Given Number of Pendant Vertices
    Fan, Yi-Zheng
    Yang, Dan
    [J]. GRAPHS AND COMBINATORICS, 2009, 25 (03) : 291 - 298
  • [8] The Signless Laplacian Spectral Radius of Graphs with Given Number of Pendant Vertices
    Yi-Zheng Fan
    Dan Yang
    [J]. Graphs and Combinatorics, 2009, 25 : 291 - 298
  • [9] THE MINIMUM SPECTRAL RADIUS OF SIGNLESS LAPLACIAN OF GRAPHS WITH A GIVEN CLIQUE NUMBER
    Su, Li
    Li, Hong-Hai
    Zhang, Jing
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 95 - 102
  • [10] The smallest signless Laplacian spectral radius of graphs with a given clique number
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2562 - 2576