On the maximum (signless) Laplacian spectral radius of the cacti

被引:0
|
作者
Fan, Dandan [1 ]
Mu, Shanzhi [2 ]
Chen, Hua [1 ]
Wang, Guoping [1 ]
机构
[1] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang, Peoples R China
[2] Jiangsu Univ Technol, Dept Math, Changzhou 213001, Jiangsu, Peoples R China
关键词
(Signless) Laplacian spectral radius; Pendent vertices; Cactus; SHARP UPPER; GRAPHS; BOUNDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that the vertex set of a graph G is V(G) {v(1) v(2),..,v(n)} Then we denote by d(vi)(G) the degree of v(i) in G. Let A(G) he the adjacent matrix of G and D(G) be the n x n diagonal matrix with its (i, i)-entry equal to d(vi) (G). Then Q(A)(G) = D(G) + A(G) and L-A(G) = D(G) - A(G) are the signless Laplacian matrix and Laplacian matrix of G, respectively. The signless Laplacian and Laplacian spectral radius of G are respectively the largest eigenvalue of Q(A)(G) and L-A(G). In this paper we characterize the graphs with the maximum signless Laplacian spectral radius and the maximum Laplacian spectral radius respectively among all cacti of order n with given k cycles or r pendent vertices.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 50 条
  • [1] On the Signless Laplacian Spectral Radius of Cacti
    Chen, Mingzhu
    Zhou, Bo
    [J]. CROATICA CHEMICA ACTA, 2016, 89 (04) : 493 - 498
  • [2] On a conjecture for the signless Laplacian spectral radius of cacti with given matching number
    Shen, Yun
    You, Lihua
    Zhang, Minjie
    Li, Shuchao
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03): : 457 - 474
  • [3] On the maximum signless Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    [J]. ARS COMBINATORIA, 2018, 140 : 389 - 395
  • [4] The maximum signless Laplacian spectral radius of graphs with forbidden subgraphs
    Chen, Dandan
    Ma, Xiaoling
    [J]. FILOMAT, 2023, 37 (24) : 8319 - 8330
  • [5] On Distance Signless Laplacian Spectral Radius and Distance Signless Laplacian Energy
    Medina, Luis
    Nina, Hans
    Trigo, Macarena
    [J]. MATHEMATICS, 2020, 8 (05)
  • [6] Signless Laplacian spectral radius and Hamiltonicity
    Zhou, Bo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 566 - 570
  • [7] BOUNDS FOR SIGNLESS LAPLACIAN SPECTRAL RADIUS
    Nurkahli, Semiha Basdas
    Kabatas, Ulkunur
    Kizilca, Fatma
    [J]. JOURNAL OF SCIENCE AND ARTS, 2018, (03): : 631 - 644
  • [8] On the signless Laplacian spectral radius of digraphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    [J]. ARS COMBINATORIA, 2013, 108 : 193 - 200
  • [9] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [10] On the signless Laplacian spectral radius of irregular graphs
    Ning, Wenjie
    Li, Hao
    Lu, Mei
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2280 - 2288