Signless Laplacian spectral radius and Hamiltonicity

被引:66
|
作者
Zhou, Bo [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Signless Laplacian spectral radius; Hamiltonian path; Hamiltonian cycle; SQUARES; SUM;
D O I
10.1016/j.laa.2009.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give tight conditions on the signless Laplacian spectral radius of a graph for the existence of Hamiltonian paths and cycles. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:566 / 570
页数:5
相关论文
共 50 条
  • [1] Signless Laplacian spectral radius and Hamiltonicity of graphs with large minimum degree
    Li, Yawen
    Liu, Yao
    Peng, Xing
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (10): : 2011 - 2023
  • [2] Signless Laplacian Spectral Conditions for Hamiltonicity of Graphs
    Yu, Guidong
    Ye, Miaolin
    Cai, Gaixiang
    Cao, Jinde
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] On Distance Signless Laplacian Spectral Radius and Distance Signless Laplacian Energy
    Medina, Luis
    Nina, Hans
    Trigo, Macarena
    [J]. MATHEMATICS, 2020, 8 (05)
  • [4] BOUNDS FOR SIGNLESS LAPLACIAN SPECTRAL RADIUS
    Nurkahli, Semiha Basdas
    Kabatas, Ulkunur
    Kizilca, Fatma
    [J]. JOURNAL OF SCIENCE AND ARTS, 2018, (03): : 631 - 644
  • [5] On the Signless Laplacian Spectral Radius of Cacti
    Chen, Mingzhu
    Zhou, Bo
    [J]. CROATICA CHEMICA ACTA, 2016, 89 (04) : 493 - 498
  • [6] On the signless Laplacian spectral radius of digraphs
    Bozkurt, S. Burcu
    Bozkurt, Durmus
    [J]. ARS COMBINATORIA, 2013, 108 : 193 - 200
  • [7] On the distance signless Laplacian spectral radius and the distance signless Laplacian energy of graphs
    Alhevaz, Abdollah
    Baghipur, Maryam
    Paul, Somnath
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (03)
  • [8] On the signless Laplacian spectral radius of irregular graphs
    Ning, Wenjie
    Li, Hao
    Lu, Mei
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2280 - 2288
  • [9] Graphs with maximal signless Laplacian spectral radius
    Chang, Ting-Jung
    Tam, Bit-Shun
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1708 - 1733
  • [10] On the maximum (signless) Laplacian spectral radius of the cacti
    Fan, Dandan
    Mu, Shanzhi
    Chen, Hua
    Wang, Guoping
    [J]. UTILITAS MATHEMATICA, 2018, 109 : 115 - 127