The rational cuspidal divisor class group of X0(N)

被引:4
|
作者
Yoo, Hwajong [1 ]
机构
[1] Seoul Natl Univ, Coll Liberal Studies & Res Inst Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Rational torsion subgroup; Rational cuspidal subgroup; Rational cuspidal divisor class group; TORSION SUBGROUPS; EISENSTEIN IDEALS; VARIETIES; POINTS;
D O I
10.1016/j.jnt.2022.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer N, we completely determine the structure of the rational cuspidal divisor class group of X0 (N), which is conjecturally equal to the rational torsion subgroup of J0(N). More specifically, for a given prime 8, we construct a rational cuspidal divisor Zt(d) for any non-trivial divisor d of N. Also, we compute the order of the linear equivalence class of Zt(d) and show that the 8-primary subgroup of the rational cuspidal divisor class group of X0 (N) is isomorphic to the direct sum of the cyclic subgroups generated by the linear equivalence classes of Ze(d). (c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:278 / 401
页数:124
相关论文
共 50 条
  • [41] Linear independence of Hecke operators in the homology of X0(N)
    Vanderkam, JM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 349 - 358
  • [42] OBSERVATION OF X0 PRODUCTION IN PI+N INTERACTIONS
    COHN, HO
    MCCULLOC.RD
    BUGG, WM
    CONDO, GT
    PHYSICS LETTERS, 1966, 21 (03): : 347 - &
  • [43] Notes on Weierstrass Points of Modular Curves X0(N)
    Im, Bo-Hae
    Jeon, Daeyeol
    Kim, Chang Heon
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (06): : 1275 - 1293
  • [44] Twisted arithmetic Siegel Weil formula on X0(N)
    Du, Tuoping
    Yang, Tonghai
    JOURNAL OF NUMBER THEORY, 2019, 203 : 95 - 117
  • [45] A short remark on Weierstrass points at infinity on X0(N)
    Kohnen, W
    MONATSHEFTE FUR MATHEMATIK, 2004, 143 (02): : 163 - 167
  • [46] On the rational cuspidal subgroup and the rational torsion points of J(0)(pq)
    Chua, SK
    Ling, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (08) : 2255 - 2263
  • [47] On the components of X0(pn)
    Coleman, RF
    JOURNAL OF NUMBER THEORY, 2005, 110 (01) : 3 - 21
  • [48] Arithmetic Siegel-Weil formula on X0(N)
    Du, Tuoping
    Yang, Tonghai
    ADVANCES IN MATHEMATICS, 2019, 345 : 702 - 755
  • [49] A Short Remark on Weierstrass Points at Infinity on X0(N)
    Winfried Kohnen
    Monatshefte für Mathematik, 2004, 143 : 163 - 167
  • [50] 感悟f′(x0)
    周小生
    新课程(中), 2011, (02) : 101 - 101