Twisted arithmetic Siegel Weil formula on X0(N)

被引:0
|
作者
Du, Tuoping [1 ]
Yang, Tonghai [2 ]
机构
[1] Northwest Univ, Dept Math, Xian 710127, Shaanxi, Peoples R China
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Twisted arithmetic Siegel-Weil formula; Kronecker limit formula; Arithmetic intersection; EISENSTEIN SERIES; HEEGNER DIVISORS; CM VALUES; DERIVATIVES; POINTS; CURVES; TRACES;
D O I
10.1016/j.jnt.2019.04.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study twisted arithmetic divisors on the modular curve X-0(N) with N square-free. For each pair (Delta, r), where Delta equivalent to r(2) mod 4N and Delta is a fundamental discriminant, we construct a twisted arithmetic theta function (phi) over cap (Delta,r)(tau) which is a generating function of arithmetic twisted Heegner divisors. We prove that the arithmetic pairing <(phi) over cap (Delta,r)(tau),(omega) over cap (N)> is equal to the special value, rather than the derivative, of some Eisenstein series, thanks to some cancellation, where (omega) over cap (N) is a normalized metric Hodge line bundle. We also prove the modularity of (phi) over cap (Delta,r)(tau). (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:95 / 117
页数:23
相关论文
共 50 条
  • [1] Arithmetic Siegel-Weil formula on X0(N)
    Du, Tuoping
    Yang, Tonghai
    ADVANCES IN MATHEMATICS, 2019, 345 : 702 - 755
  • [2] A GENUS TWO ARITHMETIC SIEGEL-WEIL FORMULA ON X0(N)
    Sankaran, Siddarth
    Shi, Yousheng
    Yang, Tonghai
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (06) : 3995 - 4041
  • [3] Green forms and the arithmetic Siegel–Weil formula
    Luis E. Garcia
    Siddarth Sankaran
    Inventiones mathematicae, 2019, 215 : 863 - 975
  • [4] Green forms and the arithmetic Siegel-Weil formula
    Garcia, Luis E.
    Sankaran, Siddarth
    INVENTIONES MATHEMATICAE, 2019, 215 (03) : 863 - 975
  • [5] On the arithmetic Siegel–Weil formula for GSpin Shimura varieties
    Chao Li
    Wei Zhang
    Inventiones mathematicae, 2022, 228 : 1353 - 1460
  • [6] On the arithmetic Siegel-Weil formula for GSpin Shimura varieties
    Li, Chao
    Zhang, Wei
    INVENTIONES MATHEMATICAE, 2022, 228 (03) : 1353 - 1460
  • [7] ON THE SIEGEL-WEIL FORMULA
    REITER, H
    MONATSHEFTE FUR MATHEMATIK, 1993, 116 (3-4): : 299 - 330
  • [8] ON THE WEIL-SIEGEL FORMULA
    KUDLA, SS
    RALLIS, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 387 : 1 - 68
  • [9] WEAK SIEGEL-WEIL FORMULA FOR M2(Q) AND ARITHMETIC ON QUATERNIONS
    Du, Tuoping
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3397 - 3426
  • [10] On the regularized Siegel-Weil formula
    Ichino, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 539 : 201 - 234