The rational cuspidal divisor class group of X0(N)

被引:4
|
作者
Yoo, Hwajong [1 ]
机构
[1] Seoul Natl Univ, Coll Liberal Studies & Res Inst Math, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Rational torsion subgroup; Rational cuspidal subgroup; Rational cuspidal divisor class group; TORSION SUBGROUPS; EISENSTEIN IDEALS; VARIETIES; POINTS;
D O I
10.1016/j.jnt.2022.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer N, we completely determine the structure of the rational cuspidal divisor class group of X0 (N), which is conjecturally equal to the rational torsion subgroup of J0(N). More specifically, for a given prime 8, we construct a rational cuspidal divisor Zt(d) for any non-trivial divisor d of N. Also, we compute the order of the linear equivalence class of Zt(d) and show that the 8-primary subgroup of the rational cuspidal divisor class group of X0 (N) is isomorphic to the direct sum of the cyclic subgroups generated by the linear equivalence classes of Ze(d). (c) 2022 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:278 / 401
页数:124
相关论文
共 50 条
  • [31] X0 WIDTH
    BAACKE, J
    JACOB, M
    POKORSKI, S
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1969, 62 (01): : 332 - +
  • [32] ON HIGHER ORDER WEIERSTRASS POINTS ON X0(N)
    Mikoc, Damir
    Muic, Goran
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2024, 28 (558): : 57 - 70
  • [33] BIELLIPTIC QUOTIENT MODULAR CURVES OF X0(N)
    Bars, Francesc
    Kamel, Mohamed
    Schweizer, Andreas
    MATHEMATICS OF COMPUTATION, 2023, 92 (340) : 895 - 929
  • [34] Modular equations of hyperelliptic X0(N) and an application
    Hibino, T
    Murabayashi, N
    ACTA ARITHMETICA, 1997, 82 (03) : 279 - 291
  • [35] DEFINING EQUATIONS OF X0(22n)
    Tu, Fang-Ting
    Yang, Yifan
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (01) : 105 - 113
  • [36] RELATIONS BETWEEN MULTIPLICITY AND DIVISOR CLASS GROUP FOR RATIONAL SURFACE SINGULARITIES
    Gurjar, R. V.
    Wagh, Vinay
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (07) : 915 - 938
  • [37] lim f[φ(x)]from(x→(x0))=f[limφ(x)]from(x→(x0))?
    刘保泰
    杜家安
    大学数学, 1993, (S1) : 21 - 23
  • [38] On the Q-rational cuspidal subgroup and the component group ofJ0(pr)
    San Ling
    Israel Journal of Mathematics, 1997, 99 : 29 - 54
  • [39] On the Q-rational cuspidal subgroup and the component group of J(0)(p(r))
    Ling, S
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 99 (1) : 29 - 54
  • [40] 对形如“存在x0,使得f(f(x0))=x0成立”问题的研究
    张小丹
    李婷
    中学数学研究, 2021, (01) : 33 - 34