Multiplicity;
rational singularities;
divisor class group;
D O I:
10.1142/S0129167X10006318
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we prove that a rational surface singularity with divisor class group Z/(2) is a rational double point. This generalizes a result by Brieskorn: if the divisor class group of a rational singularity is trivial then it is the E(8) singularity [3]. We also prove several inequalities involving the integers e, delta, m(i), C(i)(2), where Z = Sigma(i)m(i)C(i) is the fundamental cycle. The proof of this result uses ideas from Minkowski's theory of reduction of positive-definite quadratic forms. We also give some interesting counterexamples to some of the related questions in this context.
机构:
Seoul Natl Univ, Coll Liberal Studies & Res Inst Math, Seoul 08826, South KoreaSeoul Natl Univ, Coll Liberal Studies & Res Inst Math, Seoul 08826, South Korea
机构:
East China Normal Univ, Dept Math, Dongchuan RD 500, Shanghai 200241, Peoples R China
East China Normal Univ, Lab Pur Math & Math Practice, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Dept Math, Dongchuan RD 500, Shanghai 200241, Peoples R China
Lu, Jun
Tan, Sheng-Li
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Dept Math, Dongchuan RD 500, Shanghai 200241, Peoples R China
East China Normal Univ, Lab Pur Math & Math Practice, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Dept Math, Dongchuan RD 500, Shanghai 200241, Peoples R China
机构:
Univ Zaragoza, Fac Ciencias, Dept Matemat IUMA, C Pedro Cerbuna 12, E-50009 Zaragoza, SpainUniv Zaragoza, Fac Ciencias, Dept Matemat IUMA, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain
Bartolo, Enrique Artal
Wahl, Jonathan
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USAUniv Zaragoza, Fac Ciencias, Dept Matemat IUMA, C Pedro Cerbuna 12, E-50009 Zaragoza, Spain