On the rational cuspidal subgroup and the rational torsion points of J(0)(pq)

被引:12
|
作者
Chua, SK
Ling, S
机构
关键词
D O I
10.1090/S0002-9939-97-03874-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For two distinct prime numbers p, q, we compute the rational cuspidal subgroup C(pq) of J(0)(pq) and determine the e-primary part of the rational torsion subgroup of the old subvariety of Ja(pp) for most primes C. Some results of Berkovic on the nontriviality of the Mordell-Weil group of some Eisenstein factors of J(0)(pq) are also refined.
引用
收藏
页码:2255 / 2263
页数:9
相关论文
共 50 条
  • [1] Rational torsion in elliptic curves and the cuspidal subgroup
    Agashe, Amod
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2018, 30 (01): : 81 - 91
  • [2] Structure of the cuspidal rational torsion subgroup of J1(pn)
    Yang, Yifan
    Yu, Jeng-Daw
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 203 - 228
  • [3] CUSPIDAL Q-RATIONAL TORSION SUBGROUP OF J(Γ) OF LEVEL P
    Chen, Yao-Han
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1305 - 1323
  • [4] The rational torsion subgroup of J0(pr)
    Ho, Sheng-Yang Kevin
    arXiv,
  • [5] The rational torsion subgroup of J0(N)
    Yoo, Hwajong
    ADVANCES IN MATHEMATICS, 2023, 426
  • [6] On the Q-rational cuspidal subgroup and the component group of J(0)(p(r))
    Ling, S
    ISRAEL JOURNAL OF MATHEMATICS, 1997, 99 (1) : 29 - 54
  • [7] Almost rational torsion points and the cuspidal torsion packet on Fermat quotient curves
    Tzermias, Pavlos
    MATHEMATICAL RESEARCH LETTERS, 2007, 14 (01) : 99 - 105
  • [8] THE RATIONAL CUSPIDAL SUBGROUP OF J0(p2M) WITH M SQUAREFREE
    Guo, Jia-Wei
    Yang, Yifan
    Yoo, Hwajong
    Yu, Myungjun
    arXiv, 2021,
  • [9] WEIERSTRASS POINTS ON RATIONAL CUSPIDAL CURVES
    LAX, RF
    WIDLAND, C
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1988, 2A (01): : 65 - 71
  • [10] On the Q-rational cuspidal subgroup and the component group ofJ0(pr)
    San Ling
    Israel Journal of Mathematics, 1997, 99 : 29 - 54