Structure of the cuspidal rational torsion subgroup of J1(pn)

被引:2
|
作者
Yang, Yifan [1 ]
Yu, Jeng-Daw [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
[2] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
基金
加拿大自然科学与工程研究理事会;
关键词
MODULAR FUNCTION-FIELD; CLASS NUMBER; UNITS;
D O I
10.1112/jlms/jdq013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime and let J(1)(p(n)) denote the Jacobian of the modular curve X-1(p(n)). The Jacobian J(1)(p(n)) contains a Q-rational torsion subgroup generated by the cuspidal divisor classes [(a/p(n))-(infinity)], where p inverted iota a. In this paper, we determine the structure of the p-primary subgroup of this Q-rational torsion subgroup in the case where p is a regular prime.
引用
收藏
页码:203 / 228
页数:26
相关论文
共 50 条