Gaussian-process-based Bayesian optimization for neurostimulation interventions in rats

被引:3
|
作者
Choiniere, Leo [1 ,2 ,5 ]
Guay-Hottin, Rose [1 ,2 ,3 ,4 ,5 ]
Picard, Remi [1 ,2 ,3 ,4 ]
Lajoie, Guillaume [5 ,6 ]
Bonizzato, Marco [1 ,2 ,3 ,4 ,5 ]
Dancause, Numa [1 ,2 ]
机构
[1] Univ Montreal, Dept Neurosci, Montreal, PQ H3T 1J4, Canada
[2] Univ Montreal, Ctr Interdisciplinaire Rech Cerveau & Apprentissag, Montreal, PQ H3T 1J4, Canada
[3] Polytech Montreal, Dept Elect Engn, Montreal, PQ H3T 1J4, Canada
[4] Polytech Montreal, Inst Biomed Engn, Montreal, PQ H3T 1J4, Canada
[5] Mila Quebec Inst, Montreal, PQ H2S 3H1, Canada
[6] Univ Montreal, Math & Stat Dept, Montreal, PQ H3T 1J4, Canada
来源
STAR PROTOCOLS | 2024年 / 5卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
PRIMARY MOTOR CORTEX; MICROSTIMULATION; ORGANIZATION;
D O I
10.1016/j.xpro.2024.102885
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Effective neural stimulation requires adequate parametrization. Gaussian -process (GP) -based Bayesian optimization (BO) offers a framework to discover optimal stimulation parameters in real time. Here, we first provide a general protocol to deploy this framework in neurostimulation interventions and follow by exemplifying its use in detail. Specifically, we describe the steps to implant rats with multi -channel electrode arrays in the hindlimb motor cortex. We then detail how to utilize the GP -BO algorithm to maximize evoked target movements, measured as electromyographic responses. For complete details on the use and execution of this protocol, please refer to Bonizzato and colleagues (2023).1
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Gaussian-Process-Based Real-Time Ground Segmentation for Autonomous Land Vehicles
    Tongtong Chen
    Bin Dai
    Ruili Wang
    Daxue Liu
    Journal of Intelligent & Robotic Systems, 2014, 76 : 563 - 582
  • [22] Objective Bound Conditional Gaussian Process for Bayesian Optimization
    Jeong, Taewon
    Kim, Heeyoung
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [23] High Dimensional Bayesian Optimization with Elastic Gaussian Process
    Rana, Santu
    Li, Cheng
    Gupta, Sunil
    Vu Nguyen
    Venkatesh, Svetha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [24] Bayesian migration of Gaussian process regression for rapid process modeling and optimization
    Yan, Wenjin
    Hu, Shuangquan
    Yang, Yanhui
    Gao, Furong
    Chen, Tao
    CHEMICAL ENGINEERING JOURNAL, 2011, 166 (03) : 1095 - 1103
  • [25] Designing staggered platelet composite structure with Gaussian process regression based Bayesian optimization
    Park, Kundo
    Kim, Youngsoo
    Kim, Minki
    Song, Chihyeon
    Park, Jinkyoo
    Ryu, Seunghwa
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 220
  • [26] Gaussian process-based Bayesian optimization for data-driven unit commitment
    Nikolaidis, Pavlos
    Chatzis, Sotirios
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 130
  • [27] Uncertainty Quantification in Heterogeneous Treatment Effect Estimation with Gaussian-Process-Based Partially Linear Model
    Horii, Shunsuke
    Chikahara, Yoichi
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 18, 2024, : 20420 - 20429
  • [28] Bayesian optimization with Gaussian process surrogate model for source localization
    Jenkins, William F.
    Gerstoft, Peter
    Park, Yongsung
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2023, 154 (03): : 1459 - 1470
  • [29] Surrogate Modeling for Bayesian Optimization Beyond a Single Gaussian Process
    Lu, Qin
    Polyzos, Konstantinos D.
    Li, Bingcong
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 11283 - 11296
  • [30] Deep Gaussian process for multi-objective Bayesian optimization
    Ali Hebbal
    Mathieu Balesdent
    Loïc Brevault
    Nouredine Melab
    El-Ghazali Talbi
    Optimization and Engineering, 2023, 24 : 1809 - 1848