Gaussian-process-based Bayesian optimization for neurostimulation interventions in rats

被引:3
|
作者
Choiniere, Leo [1 ,2 ,5 ]
Guay-Hottin, Rose [1 ,2 ,3 ,4 ,5 ]
Picard, Remi [1 ,2 ,3 ,4 ]
Lajoie, Guillaume [5 ,6 ]
Bonizzato, Marco [1 ,2 ,3 ,4 ,5 ]
Dancause, Numa [1 ,2 ]
机构
[1] Univ Montreal, Dept Neurosci, Montreal, PQ H3T 1J4, Canada
[2] Univ Montreal, Ctr Interdisciplinaire Rech Cerveau & Apprentissag, Montreal, PQ H3T 1J4, Canada
[3] Polytech Montreal, Dept Elect Engn, Montreal, PQ H3T 1J4, Canada
[4] Polytech Montreal, Inst Biomed Engn, Montreal, PQ H3T 1J4, Canada
[5] Mila Quebec Inst, Montreal, PQ H2S 3H1, Canada
[6] Univ Montreal, Math & Stat Dept, Montreal, PQ H3T 1J4, Canada
来源
STAR PROTOCOLS | 2024年 / 5卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
PRIMARY MOTOR CORTEX; MICROSTIMULATION; ORGANIZATION;
D O I
10.1016/j.xpro.2024.102885
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Effective neural stimulation requires adequate parametrization. Gaussian -process (GP) -based Bayesian optimization (BO) offers a framework to discover optimal stimulation parameters in real time. Here, we first provide a general protocol to deploy this framework in neurostimulation interventions and follow by exemplifying its use in detail. Specifically, we describe the steps to implant rats with multi -channel electrode arrays in the hindlimb motor cortex. We then detail how to utilize the GP -BO algorithm to maximize evoked target movements, measured as electromyographic responses. For complete details on the use and execution of this protocol, please refer to Bonizzato and colleagues (2023).1
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction
    Kopsiaftis, George
    Protopapadakis, Eftychios
    Voulodimos, Athanasios
    Doulamis, Nikolaos
    Mantoglou, Aristotelis
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [42] A Gaussian-process-based framework for high-dimensional uncertainty quantification analysis in thermoacoustic instability predictions
    Guo, Shuai
    Silva, Camilo F.
    Yong, Kah Joon
    Polifke, Wolfgang
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (04) : 6251 - 6259
  • [43] Recognising the Clothing Categories from Free-Configuration using Gaussian-Process-Based Interactive Perception
    Sun, Li
    Rogers, Simon
    Aragon-Camarasa, Gerardo
    Siebert, J. Paul
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 2464 - 2470
  • [44] A Gaussian-Process-Based Model Predictive Control Approach for Trajectory Tracking and Obstacle Avoidance in Autonomous Underwater Vehicles
    Liu, Tao
    Zhao, Jintao
    Huang, Junhao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (04)
  • [45] A Gaussian-Process-Based Data-Driven Traffic Flow Model and Its Application in Road Capacity Analysis
    Liu, Zhiyuan
    Lyu, Cheng
    Wang, Zelin
    Wang, Shuaian
    Liu, Pan
    Meng, Qiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1544 - 1563
  • [46] Hierarchical Gaussian process-based Bayesian optimization for materials discovery in high entropy alloy spaces
    Alvi, Sk Md Ahnaf Akif
    Janssen, Jan
    Khatamsaz, Danial
    Perez, Danny
    Allaire, Douglas
    Arróyave, Raymundo
    Acta Materialia, 2025, 289
  • [47] Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems
    Morita, Y.
    Rezaeiravesh, S.
    Tabatabaei, N.
    Vinuesa, R.
    Fukagata, K.
    Schlatter, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [48] Deep Gaussian process for enhanced Bayesian optimization and its application in additive manufacturing
    Gnanasambandam, Raghav
    Shen, Bo
    Law, Andrew Chung Chee
    Dou, Chaoran
    Kong, Zhenyu
    IISE TRANSACTIONS, 2025, 57 (04) : 423 - 436
  • [49] Performance prediction and Bayesian optimization of screw compressors using Gaussian Process Regression
    Kumar, Abhishek
    Patil, Sumit
    Kovacevic, Ahmed
    Ponnusami, Sathiskumar Anusuya
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [50] A Survey on High-dimensional Gaussian Process Modeling with Application to Bayesian Optimization
    Binois M.
    Wycoff N.
    ACM Transactions on Evolutionary Learning and Optimization, 2022, 2 (02):