Gaussian-process-based Bayesian optimization for neurostimulation interventions in rats

被引:3
|
作者
Choiniere, Leo [1 ,2 ,5 ]
Guay-Hottin, Rose [1 ,2 ,3 ,4 ,5 ]
Picard, Remi [1 ,2 ,3 ,4 ]
Lajoie, Guillaume [5 ,6 ]
Bonizzato, Marco [1 ,2 ,3 ,4 ,5 ]
Dancause, Numa [1 ,2 ]
机构
[1] Univ Montreal, Dept Neurosci, Montreal, PQ H3T 1J4, Canada
[2] Univ Montreal, Ctr Interdisciplinaire Rech Cerveau & Apprentissag, Montreal, PQ H3T 1J4, Canada
[3] Polytech Montreal, Dept Elect Engn, Montreal, PQ H3T 1J4, Canada
[4] Polytech Montreal, Inst Biomed Engn, Montreal, PQ H3T 1J4, Canada
[5] Mila Quebec Inst, Montreal, PQ H2S 3H1, Canada
[6] Univ Montreal, Math & Stat Dept, Montreal, PQ H3T 1J4, Canada
来源
STAR PROTOCOLS | 2024年 / 5卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
PRIMARY MOTOR CORTEX; MICROSTIMULATION; ORGANIZATION;
D O I
10.1016/j.xpro.2024.102885
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Effective neural stimulation requires adequate parametrization. Gaussian -process (GP) -based Bayesian optimization (BO) offers a framework to discover optimal stimulation parameters in real time. Here, we first provide a general protocol to deploy this framework in neurostimulation interventions and follow by exemplifying its use in detail. Specifically, we describe the steps to implant rats with multi -channel electrode arrays in the hindlimb motor cortex. We then detail how to utilize the GP -BO algorithm to maximize evoked target movements, measured as electromyographic responses. For complete details on the use and execution of this protocol, please refer to Bonizzato and colleagues (2023).1
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Deep Gaussian process for multi-objective Bayesian optimization
    Hebbal, Ali
    Balesdent, Mathieu
    Brevault, Loic
    Melab, Nouredine
    Talbi, El-Ghazali
    OPTIMIZATION AND ENGINEERING, 2023, 24 (03) : 1809 - 1848
  • [32] Simulation-based Scheduling by Bayesian Optimization based on Gaussian Process Regression with Rank Correlation Kernel
    Kudo, Fumiya
    Beniyama, Fumiko
    Serita, Susumu
    2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), 2022, : 502 - 507
  • [33] EVI-GPBO: Estimated Variance Integration-Based Gaussian Process Bayesian Optimization
    Omae, Yuto
    Kakimoto, Yohei
    Sasaki, Makoto
    Mori, Masaya
    IEEE ACCESS, 2025, 13 : 26208 - 26224
  • [34] Gaussian Process Regression Based Multi-Objective Bayesian Optimization for Power System Design
    Palm, Nicolai
    Landerer, Markus
    Palm, Herbert
    SUSTAINABILITY, 2022, 14 (19)
  • [35] Empirical studies of Gaussian process based Bayesian optimization using evolutionary computation for materials informatics
    Ohno, Hiroshi
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 96 : 25 - 48
  • [36] Forgotten Tides: A Novel Strategy for Bayesian Optimization of Neurostimulation
    Foutz, Thomas J.
    EPILEPSY CURRENTS, 2024, 24 (04) : 283 - 285
  • [37] Probabilistic Conflict Detection Using Heteroscedastic Gaussian Process and Bayesian Optimization
    Pham, Duc-Thinh
    Guleria, Yash
    Alam, Sameer
    Duong, Vu
    IEEE ACCESS, 2023, 11 : 109341 - 109352
  • [38] Geoacoustic inversion using Bayesian optimization with a Gaussian process surrogate model
    Jenkins, William F.
    Gerstoft, Peter
    Park, Yongsung
    Journal of the Acoustical Society of America, 1600, 156 (02): : 812 - 822
  • [39] Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
    Wang, Zi
    Kim, Beomjoon
    Kaelbling, Leslie Pack
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [40] Geoacoustic inversion using Bayesian optimization with a Gaussian process surrogate model
    Jenkins, William F.
    Gerstoft, Peter
    Park, Yongsung
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (02): : 812 - 822