Robust quantitative susceptibility mapping via approximate message passing with parameter estimation

被引:2
|
作者
Huang, Shuai [1 ]
Lah, James J. [2 ]
Allen, Jason W. [1 ,2 ]
Qiu, Deqiang [1 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA USA
[2] Emory Univ, Dept Neurol, Atlanta, GA USA
基金
美国国家卫生研究院;
关键词
approximate message passing; compressive sensing; outlier modeling; parameter estimation; quantitative susceptibility mapping; MAGNETIC-FIELD; BRAIN IRON; QSM; INVERSION; MAGNITUDE; PHASE;
D O I
10.1002/mrm.29722
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: For quantitative susceptibility mapping (QSM), the lack of ground-truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built-in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps. Theory: Froma Bayesian perspective, the imagewavelet coefficients are approximately sparse andmodeled by the Laplace distribution. The measurement noise is modeled by a Gaussian-mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP). Methods: We compare our proposed AMP with built-in parameter estimation (AMP-PE) to the state-of-the-art L1-QSM, FANSI, andMEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP-PE. Reproducible code is available at: https://github.com/ EmoryCN2L/QSM_AMP_PE. Results: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high-frequency error norm. On the in vivo datasets, AMP-PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1-QSM, FANSI and MEDI typically require additional visual fine-tuning to select or double-check working parameters. Conclusion: AMP-PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine-tuning step, making it an excellent choice for the clinical setting.
引用
收藏
页码:1414 / 1430
页数:17
相关论文
共 50 条
  • [31] Sparse Multinomial Logistic Regression via Approximate Message Passing
    Byrne, Evan
    Schniter, Philip
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (21) : 5485 - 5498
  • [32] Compressive Imaging via Approximate Message Passing With Image Denoising
    Tan, Jin
    Ma, Yanting
    Baron, Dror
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (08) : 2085 - 2092
  • [33] Hyperspectral Unmixing Via Turbo Bilinear Approximate Message Passing
    Vila, Jeremy
    Schniter, Philip
    Meola, Joseph
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2015, 1 (03) : 143 - 158
  • [34] Compressive Phase Retrieval via Generalized Approximate Message Passing
    Schniter, Philip
    Rangan, Sundeep
    2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 815 - 822
  • [35] An Approximate Message Passing Approach for DOA Estimation in Phase Noisy Environments
    Beaumont, Guillaume
    Fablet, Ronan
    Dremeau, Angelique
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 385 - 394
  • [36] Fast DOA estimation method using generalized approximate message passing
    Zhang J.
    Zhang X.
    Jiang W.
    Liu Y.
    Li X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (10): : 2995 - 3002
  • [37] Hyperspectral Image Unmixing via Bilinear Generalized Approximate Message Passing
    Vila, Jeremy
    Schniter, Philip
    Meola, Joseph
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIX, 2013, 8743
  • [38] Phase Retrieval From Quantized Measurements via Approximate Message Passing
    Zhu, Jiang
    Yuan, Qiumeng
    Song, Chunyi
    Xu, Zhiwei
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (07) : 986 - 990
  • [39] Group Testing With Side Information via Generalized Approximate Message Passing
    Cao, Shu-Jie
    Goenka, Ritesh
    Wong, Chau-Wai
    Rajwade, Ajit
    Baron, Dror
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2366 - 2375
  • [40] Bayesian Quantized Network Coding via Generalized Approximate Message Passing
    Nabaee, Mahdy
    Labeau, Fabrice
    2014 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2014,