Robust quantitative susceptibility mapping via approximate message passing with parameter estimation

被引:2
|
作者
Huang, Shuai [1 ]
Lah, James J. [2 ]
Allen, Jason W. [1 ,2 ]
Qiu, Deqiang [1 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA USA
[2] Emory Univ, Dept Neurol, Atlanta, GA USA
基金
美国国家卫生研究院;
关键词
approximate message passing; compressive sensing; outlier modeling; parameter estimation; quantitative susceptibility mapping; MAGNETIC-FIELD; BRAIN IRON; QSM; INVERSION; MAGNITUDE; PHASE;
D O I
10.1002/mrm.29722
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: For quantitative susceptibility mapping (QSM), the lack of ground-truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built-in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps. Theory: Froma Bayesian perspective, the imagewavelet coefficients are approximately sparse andmodeled by the Laplace distribution. The measurement noise is modeled by a Gaussian-mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP). Methods: We compare our proposed AMP with built-in parameter estimation (AMP-PE) to the state-of-the-art L1-QSM, FANSI, andMEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP-PE. Reproducible code is available at: https://github.com/ EmoryCN2L/QSM_AMP_PE. Results: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high-frequency error norm. On the in vivo datasets, AMP-PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1-QSM, FANSI and MEDI typically require additional visual fine-tuning to select or double-check working parameters. Conclusion: AMP-PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine-tuning step, making it an excellent choice for the clinical setting.
引用
收藏
页码:1414 / 1430
页数:17
相关论文
共 50 条
  • [41] Approximate Message Passing with Rigorous Guarantees for Pooled Data and Quantitative Group Testing
    Tan, Nelvin
    Cobo, Pablo Pascual
    Scarlett, Jonathan
    Venkataramanan, Ramji
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2024, 6 (04): : 1027 - 1054
  • [42] Message-Passing Algorithms for Channel Estimation and Decoding Using Approximate Inference
    Badiu, Mihai-A
    Kirkelund, Gunvor E.
    Manchon, Carles Navarro
    Riegler, Erwin
    Fleury, Bernard H.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [43] Mutual Information and Optimality of Approximate Message-Passing in Random Linear Estimation
    Barbier, Jean
    Macris, Nicolas
    Dia, Mohamad
    Krzakala, Florent
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (07) : 4270 - 4303
  • [44] Approximate Message Passing for Multi-Layer Estimation in Rotationally Invariant Models
    Xu, Yizhou
    Hou, TianQi
    Liang, ShanSuo
    Mondelli, Marco
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 294 - 298
  • [45] Approximate Message Passing for Downlink Sparse Channel Estimation in FDD Massive MIMO
    Dandanov, Nikolay
    Tonchev, Krasimir
    Poulkov, Vladimir
    Koleva, Pavlina
    2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 487 - 491
  • [46] AN APPROXIMATE MESSAGE PASSING ALGORITHM FOR RAPID PARAMETER-FREE COMPRESSED SENSING MRI
    Millard, Charles
    Hess, Aaron T.
    Mailhe, Boris
    Tanner, Jared
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 91 - 95
  • [47] COMPRESSED SENSING UNDER MATRIX UNCERTAINTY: OPTIMUM THRESHOLDS AND ROBUST APPROXIMATE MESSAGE PASSING
    Krzakala, Florent
    Mezard, Marc
    Zdeborova, Lenka
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 5519 - 5523
  • [48] Asymptotic Analysis of Complex LASSO via Complex Approximate Message Passing (CAMP)
    Maleki, Arian
    Anitori, Laura
    Yang, Zai
    Baraniuk, Richard G.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) : 4290 - 4308
  • [49] Binary Linear Classification and Feature Selection via Generalized Approximate Message Passing
    Ziniel, Justin
    Schniter, Philip
    Sederberg, Per
    2014 48TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2014,
  • [50] Lossy Compression via Sparse Regression Codes: An Approximate Message Passing Approach
    Wu, Huihui
    Wang, Wenjie
    Liang, Shansuo
    Han, Wei
    Bai, Bo
    2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 288 - 293