Robust quantitative susceptibility mapping via approximate message passing with parameter estimation

被引:2
|
作者
Huang, Shuai [1 ]
Lah, James J. [2 ]
Allen, Jason W. [1 ,2 ]
Qiu, Deqiang [1 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA USA
[2] Emory Univ, Dept Neurol, Atlanta, GA USA
基金
美国国家卫生研究院;
关键词
approximate message passing; compressive sensing; outlier modeling; parameter estimation; quantitative susceptibility mapping; MAGNETIC-FIELD; BRAIN IRON; QSM; INVERSION; MAGNITUDE; PHASE;
D O I
10.1002/mrm.29722
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: For quantitative susceptibility mapping (QSM), the lack of ground-truth in clinical settings makes it challenging to determine suitable parameters for the dipole inversion. We propose a probabilistic Bayesian approach for QSM with built-in parameter estimation, and incorporate the nonlinear formulation of the dipole inversion to achieve a robust recovery of the susceptibility maps. Theory: Froma Bayesian perspective, the imagewavelet coefficients are approximately sparse andmodeled by the Laplace distribution. The measurement noise is modeled by a Gaussian-mixture distribution with two components, where the second component is used to model the noise outliers. Through probabilistic inference, the susceptibility map and distribution parameters can be jointly recovered using approximate message passing (AMP). Methods: We compare our proposed AMP with built-in parameter estimation (AMP-PE) to the state-of-the-art L1-QSM, FANSI, andMEDI approaches on the simulated and in vivo datasets, and perform experiments to explore the optimal settings of AMP-PE. Reproducible code is available at: https://github.com/ EmoryCN2L/QSM_AMP_PE. Results: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE, deviation from calcification moment and the highest SSIM, while MEDI achieved the lowest high-frequency error norm. On the in vivo datasets, AMP-PE is robust and successfully recovers the susceptibility maps using the estimated parameters, whereas L1-QSM, FANSI and MEDI typically require additional visual fine-tuning to select or double-check working parameters. Conclusion: AMP-PE provides automatic and adaptive parameter estimation for QSM and avoids the subjectivity from the visual fine-tuning step, making it an excellent choice for the clinical setting.
引用
收藏
页码:1414 / 1430
页数:17
相关论文
共 50 条
  • [21] Compressive Hyperspectral Imaging via Approximate Message Passing
    Tan, Jin
    Ma, Yanting
    Rueda, Hoover
    Baron, Dror
    Arce, Gonzalo R.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 389 - 401
  • [22] Mixed Linear Regression via Approximate Message Passing
    Tan, Nelvin
    Venkataramanan, Ramji
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [23] Approximate Message Passing Reconstruction of Quantitative Acoustic Microscopy Images
    Kim, Jonghoon
    Mamou, Jonathan
    Hill, Paul R.
    Canagarajah, Nishan
    Kouame, Denis
    Basarab, Adrian
    Achim, Alin
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (03) : 327 - 338
  • [24] Low-Complexity Optimization for Direction-of-Arrival Estimation via Approximate Message Passing
    Zhang, Xinyu
    Huo, Kai
    Zhang, Shuanghui
    Liu, Yongxiang
    Jiang, Weidong
    Li, Xiang
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [25] Nonlinear Function Estimation with Empirical Bayes and Approximate Message Passing
    Liu, Hangjin
    Zhou, You
    Beirami, Ahmad
    Baron, Dror
    2019 57TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2019, : 757 - 764
  • [26] Generalized Approximate Message Passing for Estimation with Random Linear Mixing
    Rangan, Sundeep
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [27] Scampi: a robust approximate message-passing framework for compressive imaging
    Barbier, Jean
    Tramel, Eric W.
    Krzakala, Florent
    INTERNATIONAL MEETING ON HIGH-DIMENSIONAL DATA-DRIVEN SCIENCE (HD3-2015), 2016, 699
  • [28] ROBUST APPROXIMATE MESSAGE PASSING FOR NONZERO-MEAN SENSING MATRICES
    Birgmeier, Stefan C.
    Goertz, Norbert
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 4898 - 4902
  • [29] Compressive Phase Retrieval via Generalized Approximate Message Passing
    Schniter, Philip
    Rangan, Sundeep
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (04) : 1043 - 1055
  • [30] Optimality of Large MIMO Detection via Approximate Message Passing
    Jeon, Charles
    Ghods, Ramina
    Maleki, Arian
    Studer, Christoph
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1227 - 1231