Sparse Multinomial Logistic Regression via Approximate Message Passing

被引:11
|
作者
Byrne, Evan [1 ]
Schniter, Philip [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Classification; feature selection; multinomial logistic regression (MLR); belief propagation; approximate message passing; ALGORITHMS; CLASSIFICATION; SELECTION;
D O I
10.1109/TSP.2016.2593691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the problem of multi class linear classification and feature selection, we propose approximate message passing approaches to sparse multinomial logistic regression (MLR). First, we propose two algorithms based on the Hybrid Generalized Approximate Message Passing framework: one finds the maximum a posteriori linear classifier and the other finds an approximation of the test-error-rate minimizing linear classifier. Then we design computationally simplified variants of these two algorithms. Next, we detail methods to tune the hyperparameters of their assumed statistical models using Stein's unbiased risk estimate and expectation-maximization, respectively. Finally, using both synthetic and real-world datasets, we demonstrate improved error-rate and runtime performance relative to existing state-of-the-art approaches to sparse MLR.
引用
收藏
页码:5485 / 5498
页数:14
相关论文
共 50 条
  • [1] Approximate Sparse Multinomial Logistic Regression for Classification
    Kayabol, Koray
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (02) : 490 - 493
  • [2] Lossy Compression via Sparse Regression Codes: An Approximate Message Passing Approach
    Wu, Huihui
    Wang, Wenjie
    Liang, Shansuo
    Han, Wei
    Bai, Bo
    [J]. 2023 IEEE INFORMATION THEORY WORKSHOP, ITW, 2023, : 288 - 293
  • [3] Mixed Regression via Approximate Message Passing
    Tan, Nelvin
    Venkataramanan, Ramji
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [4] Capacity-achieving Sparse Regression Codes via Approximate Message Passing Decoding
    Rush, Cynthia
    Greig, Adam
    Venkataramanan, Ramji
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 2016 - 2020
  • [5] Distributed Parallel Sparse Multinomial Logistic Regression
    Lei, Dajiang
    Du, Meng
    Chen, Hao
    Li, Zhixing
    Wu, Yu
    [J]. IEEE ACCESS, 2019, 7 : 55496 - 55508
  • [6] Multiclass Classification by Sparse Multinomial Logistic Regression
    Abramovich, Felix
    Grinshtein, Vadim
    Levy, Tomer
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) : 4637 - 4646
  • [7] Swept Approximate Message Passing for Sparse Estimation
    Manoel, Andre
    Krzakala, Florent
    Tramel, Eric W.
    Zdeborova, Lenka
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1123 - 1132
  • [8] Asymptotic Statistical Analysis of Sparse Group LASSO via Approximate Message Passing
    Chen, Kan
    Bu, Zhiqi
    Xu, Shiyun
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 510 - 526
  • [9] Computationally Efficient Sparse Bayesian Learning via Generalized Approximate Message Passing
    Zou, Xianbing
    Li, Fuwei
    Fang, Jun
    Li, Hongbin
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS WIRELESS BROADBAND (ICUWB2016), 2016,
  • [10] Confidence intervals for multinomial logistic regression in sparse data
    Bull, Shelley B.
    Lewinger, Juan Pablo
    Lee, Sophia S. F.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (04) : 903 - 918