Sparse Multinomial Logistic Regression via Approximate Message Passing

被引:11
|
作者
Byrne, Evan [1 ]
Schniter, Philip [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Classification; feature selection; multinomial logistic regression (MLR); belief propagation; approximate message passing; ALGORITHMS; CLASSIFICATION; SELECTION;
D O I
10.1109/TSP.2016.2593691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the problem of multi class linear classification and feature selection, we propose approximate message passing approaches to sparse multinomial logistic regression (MLR). First, we propose two algorithms based on the Hybrid Generalized Approximate Message Passing framework: one finds the maximum a posteriori linear classifier and the other finds an approximation of the test-error-rate minimizing linear classifier. Then we design computationally simplified variants of these two algorithms. Next, we detail methods to tune the hyperparameters of their assumed statistical models using Stein's unbiased risk estimate and expectation-maximization, respectively. Finally, using both synthetic and real-world datasets, we demonstrate improved error-rate and runtime performance relative to existing state-of-the-art approaches to sparse MLR.
引用
收藏
页码:5485 / 5498
页数:14
相关论文
共 50 条
  • [21] On Approximate Message Passing Algorithms for Unlimited Sampling of Sparse Signals
    Musa, Osman
    Jung, Peter
    Caire, Giuseppe
    [J]. 2023 IEEE 9TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, CAMSAP, 2023, : 131 - 135
  • [22] Sparse or Dense - Message Passing (MP) or Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery
    Mahmood, Asad
    Kang, Jaewook, Jr.
    Lee, HeungNo
    [J]. 2013 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2013, : 259 - 264
  • [23] Generalized Approximate Message Passing for Unlimited Sampling of Sparse Signals
    Musa, Osman
    Jung, Peter
    Goertz, Norbert
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 336 - 340
  • [24] Multinomial logistic regression
    Kwak, C
    Clayton-Matthews, A
    [J]. NURSING RESEARCH, 2002, 51 (06) : 406 - 412
  • [25] Scaling Multinomial Logistic Regression via Hybrid Parallelism
    Raman, Parameswaran
    Srinivasan, Sriram
    Matsushima, Shin
    Zhang, Xinhua
    Yun, Hyokun
    Vishwanathan, S. V. N.
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1460 - 1470
  • [26] Subspace quadratic regularization method for group sparse multinomial logistic regression
    Wang, Rui
    Xiu, Naihua
    Toh, Kim-Chuan
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (03) : 531 - 559
  • [27] Subspace quadratic regularization method for group sparse multinomial logistic regression
    Rui Wang
    Naihua Xiu
    Kim-Chuan Toh
    [J]. Computational Optimization and Applications, 2021, 79 : 531 - 559
  • [28] Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing Comment
    Tran, Dustin
    Blei, David M.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 156 - +
  • [29] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Chatalic, Antoine
    Gribonval, Remi
    Schniter, Philip
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) : 4556 - 4569
  • [30] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Gribonval, Remi
    Schniter, Philip
    [J]. 2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 410 - 414