Sketched Clustering via Hybrid Approximate Message Passing

被引:0
|
作者
Byrne, Evan [1 ]
Gribonval, Remi [2 ]
Schniter, Philip [1 ]
机构
[1] Ohio State Univ, Dept ECE, Columbus, OH 43210 USA
[2] Univ Rennes, INRIA, CNRS, IRISA, Rennes, France
基金
美国国家科学基金会;
关键词
GRAPHS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In sketched clustering, the dataset is first sketched down to a vector of modest size, from which the cluster centers are subsequently extracted. The goal is to perform clustering more efficiently than with methods that operate on the full training data, such as k-means++. For the sketching methodology recently proposed by Keriven, Gribonval, et al., which can be interpreted as a random sampling of the empirical characteristic function, we propose a cluster recovery algorithm based on simplified hybrid generalized approximate message passing (SHyGAMP). Numerical experiments suggest that our approach is more efficient than the state-of-the-art sketched clustering algorithms (in both computational and sample complexity) and more efficient than k-means++ in certain regimes.
引用
收藏
页码:410 / 414
页数:5
相关论文
共 50 条
  • [1] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Chatalic, Antoine
    Gribonval, Remi
    Schniter, Philip
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) : 4556 - 4569
  • [2] Hybrid Approximate Message Passing
    Rangan, Sundeep
    Fletcher, Alyson K.
    Goyal, Vivek K.
    Byrne, Evan
    Schniter, Philip
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (17) : 4577 - 4592
  • [3] Evolutionary Clustering via Message Passing
    Arzeno, Natalia M.
    Vikalo, Haris
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (06) : 2452 - 2466
  • [4] Mixed Regression via Approximate Message Passing
    Tan, Nelvin
    Venkataramanan, Ramji
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [5] Hybrid Approximate Message Passing for Generalized Group Sparsity
    Fletcher, Alyson K.
    Rangan, Sundeep
    [J]. WAVELETS AND SPARSITY XV, 2013, 8858
  • [6] CT reconstruction via Denoising Approximate Message Passing
    Perelli, Alessandro
    Lexa, Michael A.
    Can, Ali
    Davies, Mike E.
    [J]. ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX), 2016, 9847
  • [7] Compressive Hyperspectral Imaging via Approximate Message Passing
    Tan, Jin
    Ma, Yanting
    Rueda, Hoover
    Baron, Dror
    Arce, Gonzalo R.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 389 - 401
  • [8] COMPRESSIVE PARAMETER ESTIMATION VIA APPROXIMATE MESSAGE PASSING
    Hamzehei, Shermin
    Duarte, Marco F.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3327 - 3331
  • [9] Hybrid Vector Perturbation Precoding: The Blessing of Approximate Message Passing
    Lyu, Shanxiang
    Ling, Cong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 178 - 193
  • [10] Hybrid Generalized Approximate Message Passing with Applications to Structured Sparsity
    Rangan, Sundeep
    Fletcher, Alyson K.
    Goyal, Vivek K.
    Schniter, Philip
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,