Hybrid Approximate Message Passing

被引:32
|
作者
Rangan, Sundeep [1 ]
Fletcher, Alyson K. [2 ,3 ,4 ,5 ]
Goyal, Vivek K. [6 ]
Byrne, Evan [7 ]
Schniter, Philip [7 ]
机构
[1] NYU, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[6] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[7] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Approximate message passing; belief propagation; sum-product algorithm; max-sum algorithm; group sparsity; multinomial logistic regression; MULTINOMIAL LOGISTIC-REGRESSION; BELIEF PROPAGATION; ALGORITHMS;
D O I
10.1109/TSP.2017.2713759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing small, linearizable couplings of variables. AMP approximations based on the central limit theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance-complexity tradeoff can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.
引用
收藏
页码:4577 / 4592
页数:16
相关论文
共 50 条
  • [1] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Chatalic, Antoine
    Gribonval, Remi
    Schniter, Philip
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) : 4556 - 4569
  • [2] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Gribonval, Remi
    Schniter, Philip
    [J]. 2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 410 - 414
  • [3] Hybrid Approximate Message Passing for Generalized Group Sparsity
    Fletcher, Alyson K.
    Rangan, Sundeep
    [J]. WAVELETS AND SPARSITY XV, 2013, 8858
  • [4] Hybrid Vector Perturbation Precoding: The Blessing of Approximate Message Passing
    Lyu, Shanxiang
    Ling, Cong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 178 - 193
  • [5] Hybrid Generalized Approximate Message Passing with Applications to Structured Sparsity
    Rangan, Sundeep
    Fletcher, Alyson K.
    Goyal, Vivek K.
    Schniter, Philip
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [6] Vector Approximate Message Passing
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (10) : 6664 - 6684
  • [7] Memory Approximate Message Passing
    Liu, Lei
    Huang, Shunqi
    Kurkoski, Brian M.
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 1379 - 1384
  • [8] Vector Approximate Message Passing
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson K.
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1588 - 1592
  • [9] On Convergence of Approximate Message Passing
    Caltagirone, Francesco
    Zdeborova, Lenka
    Krzakala, Florent
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1812 - 1816
  • [10] Convolutional Approximate Message-Passing
    Takeuchi, Keigo
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 416 - 420