Hybrid Approximate Message Passing

被引:32
|
作者
Rangan, Sundeep [1 ]
Fletcher, Alyson K. [2 ,3 ,4 ,5 ]
Goyal, Vivek K. [6 ]
Byrne, Evan [7 ]
Schniter, Philip [7 ]
机构
[1] NYU, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA
[2] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[6] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[7] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Approximate message passing; belief propagation; sum-product algorithm; max-sum algorithm; group sparsity; multinomial logistic regression; MULTINOMIAL LOGISTIC-REGRESSION; BELIEF PROPAGATION; ALGORITHMS;
D O I
10.1109/TSP.2017.2713759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gaussian and quadratic approximations of message passing algorithms on graphs have attracted considerable recent attention due to their computational simplicity, analytic tractability, and wide applicability in optimization and statistical inference problems. This paper presents a systematic framework for incorporating such approximate message passing (AMP) methods in general graphical models. The key concept is a partition of dependencies of a general graphical model into strong and weak edges, with the weak edges representing small, linearizable couplings of variables. AMP approximations based on the central limit theorem can be readily applied to aggregates of many weak edges and integrated with standard message passing updates on the strong edges. The resulting algorithm, which we call hybrid generalized approximate message passing (HyGAMP), can yield significantly simpler implementations of sum-product and max-sum loopy belief propagation. By varying the partition of strong and weak edges, a performance-complexity tradeoff can be achieved. Group sparsity and multinomial logistic regression problems are studied as examples of the proposed methodology.
引用
收藏
页码:4577 / 4592
页数:16
相关论文
共 50 条
  • [31] An Expectation Propagation Perspective on Approximate Message Passing
    Meng, Xiangming
    Wu, Sheng
    Kuang, Linling
    Lu, Jianhua
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (08) : 1194 - 1197
  • [32] On the Convergence of Approximate Message Passing with Arbitrary Matrices
    Rangan, Sundeep
    Schniter, Philip
    Fletcher, Alyson
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 236 - 240
  • [33] Parametric Bilinear Generalized Approximate Message Passing
    Parker, Jason T.
    Schniter, Philip
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 795 - 808
  • [34] Sparse or Dense - Message Passing (MP) or Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery
    Mahmood, Asad
    Kang, Jaewook, Jr.
    Lee, HeungNo
    [J]. 2013 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2013, : 259 - 264
  • [35] Semidefinite Programs Simulate Approximate Message Passing Robustly
    Ivkov, Misha
    Schramm, Tselil
    [J]. PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 348 - 357
  • [36] Graph-based approximate message passing iterations
    Gerbelot, Cedric
    Berthier, Raphael
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (04) : 2562 - 2628
  • [37] CT reconstruction via Denoising Approximate Message Passing
    Perelli, Alessandro
    Lexa, Michael A.
    Can, Ali
    Davies, Mike E.
    [J]. ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX), 2016, 9847
  • [38] Unitary Approximate Message Passing for Sparse Bayesian Learning
    Luo, Man
    Guo, Qinghua
    Jin, Ming
    Eldar, Yonina C.
    Huang, Defeng
    Meng, Xiangming
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 6023 - 6038
  • [39] Coupling Information Transmission With Approximate Message-Passing
    Truhachev, Dmitri
    McNutt, David
    [J]. IEEE COMMUNICATIONS LETTERS, 2016, 20 (10) : 1995 - 1998
  • [40] Approximate message passing with restricted Boltzmann machine priors
    Tramel, Eric W.
    Dremeau, Angelique
    Krzakala, Florent
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,