Sparse Multinomial Logistic Regression via Approximate Message Passing

被引:11
|
作者
Byrne, Evan [1 ]
Schniter, Philip [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Classification; feature selection; multinomial logistic regression (MLR); belief propagation; approximate message passing; ALGORITHMS; CLASSIFICATION; SELECTION;
D O I
10.1109/TSP.2016.2593691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the problem of multi class linear classification and feature selection, we propose approximate message passing approaches to sparse multinomial logistic regression (MLR). First, we propose two algorithms based on the Hybrid Generalized Approximate Message Passing framework: one finds the maximum a posteriori linear classifier and the other finds an approximation of the test-error-rate minimizing linear classifier. Then we design computationally simplified variants of these two algorithms. Next, we detail methods to tune the hyperparameters of their assumed statistical models using Stein's unbiased risk estimate and expectation-maximization, respectively. Finally, using both synthetic and real-world datasets, we demonstrate improved error-rate and runtime performance relative to existing state-of-the-art approaches to sparse MLR.
引用
收藏
页码:5485 / 5498
页数:14
相关论文
共 50 条
  • [31] Compressive Hyperspectral Imaging via Approximate Message Passing
    Tan, Jin
    Ma, Yanting
    Rueda, Hoover
    Baron, Dror
    Arce, Gonzalo R.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 389 - 401
  • [32] COMPRESSIVE PARAMETER ESTIMATION VIA APPROXIMATE MESSAGE PASSING
    Hamzehei, Shermin
    Duarte, Marco F.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3327 - 3331
  • [33] On Approximate Message Passing for Reconstruction of Non-Uniformly Sparse Signals
    Som, Subhojit
    Potter, Lee C.
    Schniter, Philip
    [J]. PROCEEDINGS OF THE IEEE 2010 NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2010, : 223 - 229
  • [34] Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning
    Kamilov, Ulugbek S.
    Rangan, Sundeep
    Fletcher, Alyson K.
    Unser, Michael
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2969 - 2985
  • [35] Approximate Message Passing for Sparse Recovering of Spatially and Temporally Correlated Data
    Li, Yangqing
    Chen, Wei
    Yin, Changchuan
    Han, Zhu
    [J]. 2015 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2015,
  • [36] Efficient Recovery of Structured Sparse Signals via Approximate Message Passing with Structured Spike and Slab Prior
    Meng, Xiangming
    Wu, Sheng
    Andersen, Michael Riis
    Zhu, Jiang
    Ni, Zuyao
    [J]. CHINA COMMUNICATIONS, 2018, 15 (06) : 1 - 17
  • [37] Sparse Bayesian Learning Based on Approximate Message Passing with Unitary Transformation
    Luo, Man
    Guo, Qinghua
    Huang, Defeng
    Xi, Jiangtao
    [J]. 2019 IEEE VTS ASIA PACIFIC WIRELESS COMMUNICATIONS SYMPOSIUM (APWCS 2019), 2019,
  • [38] The Error Probability of Sparse Superposition Codes With Approximate Message Passing Decoding
    Rush, Cynthia
    Venkataramanan, Ramji
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 3278 - 3303
  • [39] Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis
    Sakata, Ayaka
    Xu, Yingying
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [40] Fast Signal Separation of 2-D Sparse Mixture via Approximate Message-Passing
    Kang, Jaewook
    Jung, Hyoyoung
    Kim, Kiseon
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (11) : 2024 - 2028