A new variable shape parameter strategy for RBF approximation using neural networks

被引:9
|
作者
Mojarrad, Fatemeh Nassajian [1 ]
Veiga, Maria Han [2 ,3 ]
Hesthaven, Jan S. [4 ]
oeffner, Philipp [5 ]
机构
[1] Univ Zurich, Inst Math, Zurich, Switzerland
[2] Univ Michigan, Dept Math, Ann Arbor, MI USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI USA
[4] Ecole Polytech Fed Lausanne, Chair Computat Math & Simulat Sci, Lausanne, Switzerland
[5] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
关键词
Meshfree methods; Radial basis function; Artificial neural network; Variable shape parameter; Unsupervised learning; RADIAL BASIS FUNCTION; NEWTON ITERATION; INTERPOLATION; EQUATIONS;
D O I
10.1016/j.camwa.2023.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between the ill-conditioning of the interpolation matrix and high accuracy. In this paper, we demonstrate how to use neural networks to determine the shape parameters in RBFs. In particular, we construct a multilayer perceptron (MLP) trained using an unsupervised learning strategy, and use it to predict shape parameters for inverse multiquadric and Gaussian kernels. We test the neural network approach in RBF interpolation tasks and in a RBF-finite difference method in one and two-space dimensions, demonstrating promising results.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条