A new variable shape parameter strategy for RBF approximation using neural networks

被引:9
|
作者
Mojarrad, Fatemeh Nassajian [1 ]
Veiga, Maria Han [2 ,3 ]
Hesthaven, Jan S. [4 ]
oeffner, Philipp [5 ]
机构
[1] Univ Zurich, Inst Math, Zurich, Switzerland
[2] Univ Michigan, Dept Math, Ann Arbor, MI USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI USA
[4] Ecole Polytech Fed Lausanne, Chair Computat Math & Simulat Sci, Lausanne, Switzerland
[5] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
关键词
Meshfree methods; Radial basis function; Artificial neural network; Variable shape parameter; Unsupervised learning; RADIAL BASIS FUNCTION; NEWTON ITERATION; INTERPOLATION; EQUATIONS;
D O I
10.1016/j.camwa.2023.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between the ill-conditioning of the interpolation matrix and high accuracy. In this paper, we demonstrate how to use neural networks to determine the shape parameters in RBFs. In particular, we construct a multilayer perceptron (MLP) trained using an unsupervised learning strategy, and use it to predict shape parameters for inverse multiquadric and Gaussian kernels. We test the neural network approach in RBF interpolation tasks and in a RBF-finite difference method in one and two-space dimensions, demonstrating promising results.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [21] New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks
    C. J. Zúñiga-Aguilar
    A. Coronel-Escamilla
    J. F. Gómez-Aguilar
    V. M. Alvarado-Martínez
    H. M. Romero-Ugalde
    The European Physical Journal Plus, 133
  • [22] Prediction of Time Series Using RBF Neural Networks: A New Approach of Clustering
    Awad, Mohammed
    Pomares, Hector
    Rojas, Ignacio
    Salameh, Osama
    Hamdon, Mai
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2009, 6 (02) : 138 - 143
  • [23] New Sliding Mode Control of Building Structure Using RBF Neural Networks
    Li, Zhijun
    Deng, Zichen
    Gu, Zhiping
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 2820 - +
  • [24] Variable shape parameter Kansa RBF method for the solution of nonlinear boundary value problems
    Jankowska, Malgorzata A.
    Karageorghis, Andreas
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 103 : 32 - 40
  • [25] The automatic model selection and variable kernel width for RBF neural networks
    Zhou, Peng
    Li, Dehua
    Wu, Hong
    Cheng, Feng
    NEUROCOMPUTING, 2011, 74 (17) : 3628 - 3637
  • [26] A new higher-order RBF-FD scheme with optimal variable shape parameter for partial differential equation
    Ng, Y. L.
    Ng, K. C.
    Sheu, T. W. H.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2019, 75 (05) : 289 - 311
  • [27] A new algorithm for online structure and parameter adaptation of RBF networks
    Alexandridis, A
    Sarimveis, H
    Bafas, G
    NEURAL NETWORKS, 2003, 16 (07) : 1003 - 1017
  • [28] Parameter Identification of Lorenz System Using RBF Neural Networks with Time-Varying Learning Algorithm
    Ko, Chia-Nan
    Fu, Yu-Yi
    Lee, Cheng-Ming
    Liu, Guan-Yu
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 285 - 288
  • [29] A new sequential learning algorithm for RBF neural networks
    Yang, G
    Lü, JH
    Liu, ZY
    SCIENCE IN CHINA SERIES E-ENGINEERING & MATERIALS SCIENCE, 2004, 47 (04): : 447 - 460
  • [30] A new sequential learning algorithm for RBF neural networks
    YANG Ge1
    2. Department of Power Engineering
    Science in China(Series E:Technological Sciences), 2004, (04) : 447 - 460