A new variable shape parameter strategy for RBF approximation using neural networks

被引:9
|
作者
Mojarrad, Fatemeh Nassajian [1 ]
Veiga, Maria Han [2 ,3 ]
Hesthaven, Jan S. [4 ]
oeffner, Philipp [5 ]
机构
[1] Univ Zurich, Inst Math, Zurich, Switzerland
[2] Univ Michigan, Dept Math, Ann Arbor, MI USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI USA
[4] Ecole Polytech Fed Lausanne, Chair Computat Math & Simulat Sci, Lausanne, Switzerland
[5] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
关键词
Meshfree methods; Radial basis function; Artificial neural network; Variable shape parameter; Unsupervised learning; RADIAL BASIS FUNCTION; NEWTON ITERATION; INTERPOLATION; EQUATIONS;
D O I
10.1016/j.camwa.2023.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between the ill-conditioning of the interpolation matrix and high accuracy. In this paper, we demonstrate how to use neural networks to determine the shape parameters in RBFs. In particular, we construct a multilayer perceptron (MLP) trained using an unsupervised learning strategy, and use it to predict shape parameters for inverse multiquadric and Gaussian kernels. We test the neural network approach in RBF interpolation tasks and in a RBF-finite difference method in one and two-space dimensions, demonstrating promising results.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [41] Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2D Functions Approximation
    Bellil, Wajdi
    Ben Amar, Chokri
    Alimi, Adel M.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 13, 2006, 13 : 102 - 107
  • [42] Two new techniques for aircraft parameter estimation using neural networks
    Raisinghani, SC
    Ghosh, AK
    Kalra, PK
    AERONAUTICAL JOURNAL, 1998, 102 (1011): : 25 - 30
  • [43] Two new techniques for aircraft parameter estimation using neural networks
    Indian Inst of Technology, Kanpur, India
    Aeronaut J, 1011 (25-30):
  • [44] Adaptive compensation of modeled friction using a RBF neural network approximation
    Vitiello, Valentina
    Tornambe, Antonio
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 197 - 202
  • [45] Target shape approximation of funicular surfaces by load control using RBF interpolation
    Hayashi K.
    Yanagimuro J.
    International Journal of Space Structures, 2024, 39 (02) : 115 - 125
  • [46] A new RBF Neural Network control strategy based on new object function
    Wan, YM
    Wang, SA
    Du, HF
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 816 - 819
  • [47] On Parameter Estimation of Control Chart Patterns Using RBF Neural Network
    Yang, Miin-Shen
    Yang, Jenn-Hwai
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1489 - 1493
  • [48] New hierarchical genetic algorithm for training of RBF neural networks
    Zheng, Pi'e
    Ma, Yanhua
    Kongzhi yu Juece/Control and Decision, 2000, 15 (02): : 165 - 168
  • [49] An Enhanced Swarm Intelligence based Training Algorithm for RBF Neural Networks in Function Approximation
    Salem, Mohammed
    Zingla, Meriem Amina
    Khelfi, Mohamed Faycal
    2014 SECOND WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2014, : 504 - 509
  • [50] Three-phase strategy for the OSD learning method in RBF neural networks
    Montazer, Gh. A.
    Sabzevari, Reza
    Ghorbani, Fatemeh
    NEUROCOMPUTING, 2009, 72 (7-9) : 1797 - 1802