A new variable shape parameter strategy for RBF approximation using neural networks

被引:9
|
作者
Mojarrad, Fatemeh Nassajian [1 ]
Veiga, Maria Han [2 ,3 ]
Hesthaven, Jan S. [4 ]
oeffner, Philipp [5 ]
机构
[1] Univ Zurich, Inst Math, Zurich, Switzerland
[2] Univ Michigan, Dept Math, Ann Arbor, MI USA
[3] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI USA
[4] Ecole Polytech Fed Lausanne, Chair Computat Math & Simulat Sci, Lausanne, Switzerland
[5] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
关键词
Meshfree methods; Radial basis function; Artificial neural network; Variable shape parameter; Unsupervised learning; RADIAL BASIS FUNCTION; NEWTON ITERATION; INTERPOLATION; EQUATIONS;
D O I
10.1016/j.camwa.2023.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between the ill-conditioning of the interpolation matrix and high accuracy. In this paper, we demonstrate how to use neural networks to determine the shape parameters in RBFs. In particular, we construct a multilayer perceptron (MLP) trained using an unsupervised learning strategy, and use it to predict shape parameters for inverse multiquadric and Gaussian kernels. We test the neural network approach in RBF interpolation tasks and in a RBF-finite difference method in one and two-space dimensions, demonstrating promising results.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 50 条
  • [31] Bearing capacity modeling of composite pile foundation using parameter-optimized RBF neural networks
    Cao, Maosen
    Su, Baosheng
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 563 - 568
  • [32] A new sequential learning algorithm for RBF neural networks
    Ge Yang
    Jianhong Lü
    Zhiyuan Liu
    Science in China Series E: Technological Sciences, 2004, 47 : 447 - 460
  • [33] Variable structure neural networks for adaptive control of nonlinear systems using the stochastic approximation
    Mekki, Hassen
    Chtourou, Mohamed
    Derbel, Nabil
    SIMULATION MODELLING PRACTICE AND THEORY, 2006, 14 (07) : 1000 - 1009
  • [34] Parameter estimation using a committee of local expert RBF networks
    Liatsis, P
    Kammerer, C
    Kouremetis, G
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, PROCEEDINGS: FROM CLASSICAL MEASUREMENT TO COMPUTING WITH PERCEPTIONS, 2003, : 161 - 165
  • [35] Dynamic systems identification using RBF neural networks
    Gil, Ricardo Valverde
    Paez, Diego Gachet
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2007, 4 (02): : 32 - +
  • [36] Image Fusion Algorithm Using RBF Neural Networks
    Zhang, Hong
    Sun, Xiao-Nan
    Zhao, Lei
    Liu, Lei
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, 2008, 5271 : 417 - +
  • [37] Face recognition by using generalized RBF neural networks
    Yin, Jianqin
    Li, Jinping
    Li, Yuelong
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 3055 - 3059
  • [38] A new strategy for using supervised artificial neural networks in QSAR
    Devillers, J
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2005, 16 (05) : 433 - 442
  • [39] A New Extension of Newton Algorithm for Nonlinear System Modelling Using RBF Neural Networks
    Zhang, Long
    Li, Kang
    Bai, Er-Wei
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (11) : 2929 - 2933
  • [40] On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method
    Uddin, Marjan
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (01) : 135 - 144