Algorithm for placement of reference points and choice of an appropriate variable shape parameter for the RBF approximation

被引:6
|
作者
Majdisova, Zuzana [1 ]
Skala, Vaclav [1 ]
Smolik, Michal [1 ]
机构
[1] Univ West Bohemia, Dept Comp Sci & Engn, Fac Sci Appl, Plzen, Czech Republic
关键词
Radial basis functions; approximation; variable shape parameter; curvature; Lagrange multipliers; FUNCTION NEURAL-NETWORK; RADIAL BASIS FUNCTIONS; INTERPOLATION; OPTIMIZATION; EVOLUTION; STRATEGY; MODEL;
D O I
10.3233/ICA-190610
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many Radial Basis Functions (RBFs) contain a shape parameter which has an important role to ensure good quality of the RBF approximation. Determination of the optimal shape parameter is a difficult problem. In the majority of papers dealing with the RBF approximation, the shape parameter is set up experimentally or using some ad-hoc method. Moreover, the constant shape parameter is almost always used for the RBF approximation, but the variable shape parameter produces more accurate results. Several variable shape parameter methods, which are based on random strategy or on an evolutionary algorithm, have been developed. Another aspect which has an influence on the quality of the RBF approximation is the placement of reference points. A novel algorithm for finding an appropriate set of reference points and a variable shape parameter selection for the RBF approximation of functions y = f(x) (i.e. the case when a one-dimensional dataset is given and each point from this dataset is associated with a scalar value) is presented. Our approach has two steps and is based on exploiting features of the given dataset, such as extreme points or inflection points, and on comparison of the first curvature of a curve. The proposed algorithm can be used for the approximation of data describing a curve parameterized by one variable in multidimensional space, e.g. a robot path planning, etc.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 19 条
  • [1] A new variable shape parameter strategy for RBF approximation using neural networks
    Mojarrad, Fatemeh Nassajian
    Veiga, Maria Han
    Hesthaven, Jan S.
    oeffner, Philipp
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 143 : 151 - 168
  • [2] Hybrid shape parameter strategy for the RBF approximation of vibrating systems
    Golbabai, A.
    Rabiei, H.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (17) : 2410 - 2427
  • [3] Optimal variable shape parameter for multiquadric based RBF-FD method
    Bayona, Victor
    Moscoso, Miguel
    Kindelan, Manuel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (06) : 2466 - 2481
  • [4] A Parameter Adaptive Clustering Algorithm Based on Reference Points and Density
    Ouyang, Cheng
    Tan, Jun
    Yu, Jun
    Zeng, ZhiFan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON LOGISTICS, ENGINEERING, MANAGEMENT AND COMPUTER SCIENCE (LEMCS 2015), 2015, 117 : 672 - 675
  • [5] Variable parameter gradient estimation algorithm with local polynomial approximation
    Xue, YC
    Huang, J
    Yang, QW
    2003 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1 AND 2, PROCEEDINGS, 2003, : 277 - 281
  • [6] Variable shape parameter Kansa RBF method for the solution of nonlinear boundary value problems
    Jankowska, Malgorzata A.
    Karageorghis, Andreas
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 103 : 32 - 40
  • [7] Variable parameter recursive incremental estimation algorithm with local polynomial approximation
    Xue, YC
    Yang, QW
    Qian, JX
    IECON-2002: PROCEEDINGS OF THE 2002 28TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4, 2002, : 2011 - 2015
  • [8] A random variable shape parameter strategy for radial basis function approximation methods
    Sarra, Scott A.
    Sturgill, Derek
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2009, 33 (11) : 1239 - 1245
  • [9] Finding a good shape parameter of RBF to solve PDEs based on the particle swarm optimization algorithm
    Koupaei, Javad Alikhani
    Firouznia, Marjan
    Hosseini, Seyed Mohammad Mahdi
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (04) : 3641 - 3652
  • [10] A new variable shape parameter strategy for Gaussian radial basis function approximation methods
    Ranjbar, Mojtaba
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2015, 42 (02): : 260 - 272