Chaotic saddles and interior crises in a dissipative nontwist system

被引:3
|
作者
Simile Baroni, R. [1 ]
Egydio de Carvalho, R. [1 ]
Caldas, I. L. [2 ]
Viana, R. L. [2 ,3 ]
Morrison, P. J.
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Dept Estatist Matemat Aplicada & Ciencias Comp, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, SP, Brazil
[3] Univ Fed Parana UFPR, Dept Fis DF, BR-80060000 Curitiba, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC-FIELD LINES; PERIODIC-ORBITS; TWIST; TRANSPORT; MAPS; ATTRACTORS; TRANSITION; DYNAMICS;
D O I
10.1103/PhysRevE.107.024216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Alfven chaotic saddles\
    Rempel, EL
    Chian, ACL
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (11): : 4009 - 4017
  • [2] Blowout bifurcation of chaotic saddles
    Kapitaniak, T
    Lai, YC
    Grebogi, C
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 1999, 3 (01) : 9 - +
  • [3] Analysis of chaotic saddles in a nonlinear vibro-impact system
    Feng, Jinqian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 39 - 50
  • [4] Quantum chaotic attractor in a dissipative system
    Liu, WV
    Schieve, WC
    PHYSICAL REVIEW LETTERS, 1997, 78 (17) : 3278 - 3281
  • [5] INERTIAL AND DISSIPATIVE PROPERTIES OF CHAOTIC SYSTEM
    KOLOMIETZ, VM
    KONDRATYEV, VN
    NUCLEAR PHYSICS A, 1992, 545 (1-2) : C561 - C566
  • [6] HOW OFTEN ARE CHAOTIC SADDLES NONHYPERBOLIC
    LAI, YC
    GREBOGI, C
    YORKE, JA
    KAN, I
    NONLINEARITY, 1993, 6 (05) : 779 - 797
  • [7] Searching chaotic saddles in high dimensions
    Sala, M.
    Leitao, J. C.
    Altmann, E. G.
    CHAOS, 2016, 26 (12)
  • [8] Fractal dimensions of chaotic saddles of dynamical systems
    Hunt, Brian R.
    Ott, Edward
    Yorke, James A.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 54 (05):
  • [9] A PROCEDURE FOR FINDING NUMERICAL TRAJECTORIES ON CHAOTIC SADDLES
    NUSSE, HE
    YORKE, JA
    PHYSICA D, 1989, 36 (1-2): : 137 - 156
  • [10] Chaotic Saddles in a Generalized Lorenz Model of Magnetoconvection
    Franco, Francis F.
    Rempel, Erico L.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):