Chaotic saddles and interior crises in a dissipative nontwist system

被引:3
|
作者
Simile Baroni, R. [1 ]
Egydio de Carvalho, R. [1 ]
Caldas, I. L. [2 ]
Viana, R. L. [2 ,3 ]
Morrison, P. J.
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Dept Estatist Matemat Aplicada & Ciencias Comp, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, SP, Brazil
[3] Univ Fed Parana UFPR, Dept Fis DF, BR-80060000 Curitiba, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC-FIELD LINES; PERIODIC-ORBITS; TWIST; TRANSPORT; MAPS; ATTRACTORS; TRANSITION; DYNAMICS;
D O I
10.1103/PhysRevE.107.024216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Multistability, noise, and attractor hopping: The crucial role of chaotic saddles
    Kraut, S
    Feudel, U
    PHYSICAL REVIEW E, 2002, 66 (01):
  • [32] Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles
    Dhamala, M
    Lai, YC
    PHYSICAL REVIEW E, 1999, 60 (05): : 6176 - 6179
  • [33] Simplest dissipative chaotic flow
    Department of Physics, University of Wisconsin, Madison, WI 53706, United States
    Phys Lett Sect A Gen At Solid State Phys, 4-5 (271-274):
  • [34] CHAOTIC OSCILLATIONS AND NOISE TRANSFORMATIONS IN A SIMPLE DISSIPATIVE SYSTEM WITH DELAYED FEEDBACK
    ZVEREV, VV
    RUBINSTEIN, BY
    JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) : 221 - 239
  • [35] Simplest dissipative chaotic flow
    Sprott, JC
    PHYSICS LETTERS A, 1997, 228 (4-5) : 271 - 274
  • [36] Interior crises in a dripping faucet experiment
    Pinto, RD
    Goncalves, WM
    Sartorelli, JC
    Caldas, IL
    Baptista, MS
    PHYSICAL REVIEW E, 1998, 58 (03) : 4009 - 4011
  • [37] Coexisting attractors, chaotic saddles, and fractal basins in a power electronic circuit
    Banerjee, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (09): : 847 - 849
  • [38] High-dimensional chaotic saddles in the Kuramoto-Sivashinsky equation
    Rempel, EL
    Chian, ACL
    PHYSICS LETTERS A, 2003, 319 (1-2) : 104 - 109
  • [39] On Estimating the Dissipative Factor of the Martian Interior
    Zharkov, V. N.
    Gudkova, T. V.
    Batov, A. V.
    SOLAR SYSTEM RESEARCH, 2017, 51 (06) : 479 - 490
  • [40] Chaotic saddles in a gravitational field: The case of inertial particles in finite domains
    Drotos, Gabor
    Tel, Tamas
    PHYSICAL REVIEW E, 2011, 83 (05):