Chaotic saddles and interior crises in a dissipative nontwist system

被引:3
|
作者
Simile Baroni, R. [1 ]
Egydio de Carvalho, R. [1 ]
Caldas, I. L. [2 ]
Viana, R. L. [2 ,3 ]
Morrison, P. J.
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Dept Estatist Matemat Aplicada & Ciencias Comp, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, SP, Brazil
[3] Univ Fed Parana UFPR, Dept Fis DF, BR-80060000 Curitiba, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC-FIELD LINES; PERIODIC-ORBITS; TWIST; TRANSPORT; MAPS; ATTRACTORS; TRANSITION; DYNAMICS;
D O I
10.1103/PhysRevE.107.024216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Design and control of a multi-wing dissipative chaotic system
    Zarei A.
    Tavakoli S.
    Tavakoli, Saeed (tavakoli@ece.usb.ac.ir), 2018, Springer Science and Business Media Deutschland GmbH (06) : 140 - 153
  • [22] New type of boundary crises: chaotic boundary crises
    Hong, L.
    Xu, J.X.
    Wuli Xuebao/Acta Physica Sinica, 2001, 50 (04):
  • [23] Shearless effective barriers to chaotic transport induced by even twin islands in nontwist systems
    Mugnaine, M.
    Caldas, I.L.
    Szezech, J.D.
    Viana, R.L.
    Morrison, P.J.
    Physical Review E, 2024, 110 (04)
  • [24] A new type of boundary crises: Chaotic boundary crises
    Hong, L
    Xu, JX
    ACTA PHYSICA SINICA, 2001, 50 (04) : 612 - 618
  • [25] Delayed Feedback Control Method for Dynamical Systems with Chaotic Saddles
    Kobayashi, Miki U.
    Aihara, Kazuyuki
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2012, 1468 : 207 - 215
  • [26] Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems
    Mugnaine, Michele
    Batista, Antonio M.
    Caldas, Ibere L.
    Szezech Jr, Jose D.
    de Carvalho, Ricardo Egydio
    Viana, Ricardo L.
    CHAOS, 2021, 31 (02)
  • [27] Crises in a dissipative bouncing ball model
    Livorati, Andre L. P.
    Caldas, Ibere L.
    Dettmann, Carl P.
    Leonel, Edson D.
    PHYSICS LETTERS A, 2015, 379 (43-44) : 2830 - 2838
  • [28] Chaotic banking crises and regulations
    Jess Benhabib
    Jianjun Miao
    Pengfei Wang
    Economic Theory, 2016, 61 : 393 - 422
  • [29] Chaotic banking crises and regulations
    Benhabib, Jess
    Miao, Jianjun
    Wang, Pengfei
    ECONOMIC THEORY, 2016, 61 (02) : 393 - 422
  • [30] FRACTAL BOUNDARIES IN OPEN HYDRODYNAMICAL FLOWS - SIGNATURES OF CHAOTIC SADDLES
    PENTEK, A
    TOROCZKAI, Z
    TEL, T
    GREBOGI, C
    YORKE, JA
    PHYSICAL REVIEW E, 1995, 51 (05) : 4076 - 4088