Chaotic saddles and interior crises in a dissipative nontwist system

被引:3
|
作者
Simile Baroni, R. [1 ]
Egydio de Carvalho, R. [1 ]
Caldas, I. L. [2 ]
Viana, R. L. [2 ,3 ]
Morrison, P. J.
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Dept Estatist Matemat Aplicada & Ciencias Comp, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, SP, Brazil
[3] Univ Fed Parana UFPR, Dept Fis DF, BR-80060000 Curitiba, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC-FIELD LINES; PERIODIC-ORBITS; TWIST; TRANSPORT; MAPS; ATTRACTORS; TRANSITION; DYNAMICS;
D O I
10.1103/PhysRevE.107.024216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] On Estimating the Dissipative Factor of the Martian Interior
    V. N. Zharkov
    T. V. Gudkova
    A. V. Batov
    Solar System Research, 2017, 51 : 479 - 490
  • [42] Transient chimera states emerging from dynamical trapping in chaotic saddles
    Medeiros, Everton S.
    Omel'chenko, Oleh
    Feudel, Ulrike
    CHAOS, 2023, 33 (09)
  • [43] Spatiotemporal intermittency and chaotic saddles in the regularized long-wave equation
    Rempel, Erico L.
    Miranda, Rodrigo A.
    Chian, Abraham C. -L.
    PHYSICS OF FLUIDS, 2009, 21 (07)
  • [44] Coexisting attractors, chaotic saddles, and fractal basins in a power electronic circuit
    Indian Inst of Technology, Kharagpur, India
    IEEE Trans Circuits Syst I Fundam Theor Appl, 9 (847-849):
  • [45] Chaos in driven Alfven systems: unstable periodic orbits and chaotic saddles
    Chian, A. C. -L.
    Santana, W. M.
    Rempel, E. L.
    Borotto, F. A.
    Hada, T.
    Kamide, Y.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2007, 14 (01) : 17 - 29
  • [46] Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin's nonlinear accelerator model reconsidered
    Lorenz, HW
    Nusse, HE
    CHAOS SOLITONS & FRACTALS, 2002, 13 (05) : 957 - 965
  • [47] Double crises in fuzzy chaotic systems
    Hong L.
    Sun J.-Q.
    Hong, Ling (hongling@mail.xjtu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (01): : 32 - 40
  • [48] Research on Synchronous Control of a Novel 4D Dissipative Chaotic System
    Chen, Jiaqi
    Zhang, Yongchao
    Sun, Yan
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 805 - 808
  • [49] CHAOTIC BEHAVIOR OF SOLITON LATTICE IN AN UNSTABLE DISSIPATIVE DISPERSIVE NONLINEAR-SYSTEM
    KAWAHARA, T
    TAKAOKA, M
    PHYSICA D, 1989, 39 (01): : 43 - 58
  • [50] Bounds of Fuzzy Controller Output Scaling Gains for Stabilization of a Dissipative Chaotic System
    Umon, Edwin A.
    2013 IEEE INTERNATIONAL CONFERENCE ON EMERGING & SUSTAINABLE TECHNOLOGIES FOR POWER & ICT IN A DEVELOPING SOCIETY (NIGERCON 2013), 2013, : 212 - 216